Log in

Mercury(II) and lead(II) ions removal using a novel thiol-rich hydrogel adsorbent; PHPAm/Fe3O4@SiO2-SH polymer nanocomposite

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The abundant release of toxic heavy metals into wastewater has been a serious threat to human health, aquatic environments, plants, and animals; thus, it is critical to purify wastewater of these pollutants through a proper treatment process. A novel hydrogel compound was synthesized using partially hydrolyzed polyacrylamide (PHPAm) and functionalized Fe3O4-coated magnetic nanoparticles (PHPAm/Fe3O4@SiO2-SH) that is efficient in removal of mercury and lead from wastewater. This new magnetic nanoadsorbent is characterized using scanning electron microscope, Fourier-transform infrared, thermogravimetric analysis, vibrating sample magnetometer, and energy-dispersive X-ray analysis. The central composite design under response surface methodology (CCD-RSM) was applied in designing the experiments to optimize the main parameters affecting the adsorption capacity: initial concentration (77.50 mg L−1), pH (6.11 and 6.48), adsorbent dosage (25 mg), and contact time (115 and 106 min) for both Hg2+ and Pb2+ adsorption, respectively. Quadratic models were used for variable predictions and analysis of variance was applied to evaluate the statistical parameters and investigate the interactions of the variables. The high determination coefficient (R2 0.99) for both metals indicates a good correlation between actual and predicted response values. Additionally, thermodynamic modeling showed an endothermic and exothermic for Hg2+ and Pb2+, respectively, and also the spontaneous nature of both metals’ adsorption process within the temperature range of 288–318 K. Mercury and lead kinetic studies were in agreement with pseudo-second-order modeling, and the equilibrium results revealed that the Langmuir isotherm best fit the experimental data with maximum adsorption capacities of 256.41 and 227.27 (mg g−1) for Hg2+ and Pb2+, respectively. Overall, PHPAm/Fe3O4@SiO2-SH is thought to have highly promising potential for investigating heavy metals in wastewater treatment, and will make important contributions to similar studies that may be conducted in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

Download references

Acknowledgements

The authors wish to thank the Arvin Zist Pooya Lab for providing the necessary facilities to accomplish this work.

Author information

Authors and Affiliations

Authors

Contributions

Elaheh Ebrahimpour performed the analysis, wrote the manuscript, and designed the figures. Ali Kazemi designed the study, interpreted the results, helped to shape the research, and supervised the study.

Corresponding author

Correspondence to Ali Kazemi.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Angeles Blanco

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 196 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimpour, E., Kazemi, A. Mercury(II) and lead(II) ions removal using a novel thiol-rich hydrogel adsorbent; PHPAm/Fe3O4@SiO2-SH polymer nanocomposite. Environ Sci Pollut Res 30, 13605–13623 (2023). https://doi.org/10.1007/s11356-022-23055-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-23055-z

Keywords

Navigation