Log in

Biomarkers of imidacloprid toxicity in Japanese quail, Coturnix coturnix japonica

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The in vivo effect of the oral sublethal doses of 3.014 mg kg−1 of IMI (1/25 LD50) for 1, 7, 14, and 28 days every other day on Japanese quail was investigated. The results revealed that certain biomarkers in the selected tissues of the quail such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), aminotransaminases (alanine aminotransferase, ALT, and aspartate aminotransaminase, AST), phosphatases (acid phosphatase, ACP, and alkaline phosphatase, ALP), lactate dehydrogenase (LDH), adenosine-triphosphatase (ATPase), glutathione-S-transferase (GST), lipid peroxidation (LPO), and blood glucose showed significant inductions, while significant reductions in the levels of glutathione-reduced (GSH), deoxyribonucleic acid (DNA), and ribonucleic acid (RNA) were noticed. In this study, the molecular mechanisms of the toxic effects of imidacloprid on quails were elucidated regarding neurotoxicity, hepatotoxicity, oxidative stress, lipid peroxidation, antioxidant activity, and genotoxicity. Because IMI induced alterations in the levels of these biomarkers in Japanese quail; therefore, Japanese quail as a wild avian can be used as a suite bioindicator to detect imidacloprid toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author. The data are not publicly available due to privacy restrictions.

References

  • Abdel-Haleem DR, Genidy NA, Fahmy AR, Azm AE, Fatma SM, Ismail NS (2018) Comparative modelling, toxicological and biochemical studies of imidacloprid and thiamethoxam insecticides on the house fly, Musca domestica L. (Diptera: Muscidae). Egypt Acad J Biolog Sci (A Entomology) 11(1):33–42

    Article  Google Scholar 

  • Abdollahi M, Ranjbar A, Shadnia S, Nikfar S, Rezaie A (2004) Pesticides and oxidative stress: a review. Med Sci Monit 10(6):RA141–RA147

    CAS  Google Scholar 

  • Abou-Donia MB, Goldstein L B, Bullman., Tu T, Khan WA, Dechkovskaia AM, Abdel-Rahman AA (2008) Imidacloprid induces neurobehavioral deficits and increases expression of glial fibrillary acidic protein in the motor cortex and hippocampus in offspring rats following in utero exposure. J Toxicol Environ Health Part A 71(2):119-130

  • Adout A, Hawlena D, Maman R, Paz-Tal O, Karpas Z (2007) Determination of trace elements in pigeon and raven feathers by ICPMS. Int J Mass Spectrom 267(1-3):109–116

    Article  CAS  Google Scholar 

  • Ali IH, Musa TN, Ali AJ (2018) Effect of acetamiprid residues in tomato fruits on some blood profile parameters of male mice. Iraqi J Agri Sci 49(6):1110

    Google Scholar 

  • Anderson JC, Dubetz C, Palace VP (2015) Neonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effects. Sci Total Environ 505:409–422. https://doi.org/10.1016/j.scitotenv.2014.09.090

    Article  CAS  Google Scholar 

  • Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21(10):1133–1145

    Article  CAS  Google Scholar 

  • Awasthi YC, Singh SV, Goel SK, Reddy JK (1984) Irreversible inhibition of hepatic glutathione S-transferase by ciprofibrate, a peroxisome proliferator. Biochem Biophys Res Commun 123(3):1012–1018

    Article  CAS  Google Scholar 

  • Aydemir T, Öztürk R, Bozkaya LA, Tarhan L (2000) Effects of antioxidant vitamins A, C, E and trace elements Cu, Se on Cu Zn SOD, GSH-Px, CAT and LPO levels in chicken erythrocytes. Cell Biochem Funct 18(2):109-115. https://doi.org/10.1002/(SICI)1099-0844(200006)18:2<109::AID-CBF861>3.0.CO;2-2

  • Bais R, Philcox M (1994) Approved recommendation on IFCC methods for the measurement of catalytic concentration of enzymes. Part 8. IFCC method for lactate dehydrogenase (l-lactate: NAD+oxidoreductase, EC 1.1.1.27). International Federation of Clinical Chemistry (IFCC). Eur J Clin Chem Clin Biochem 32(8):639–655 PMID: 7819436

    CAS  Google Scholar 

  • Bal R, Naziroğlu M, Türk G, Yilmaz Ö, Kuloğlu T, Etem E, Baydas G (2012) Insecticide imidacloprid induces morphological and DNA damage through oxidative toxicity on the reproductive organs of develo** male rats. Cell Biochem Fund 30(6):492–499

    Article  CAS  Google Scholar 

  • Balani T, Agrawal S, Thaker AM (2011) Hematological and biochemical changes due to short-term oral administration of imidacloprid. Toxicol Int 18(1):2–4. https://doi.org/10.4103/0971-6580.75843

    Article  Google Scholar 

  • Banaee M (2013) Physiological dysfunction in fish after insecticides exposure. Insecticides often Undesired but still so Important. InTech, Rijeka, pp 103–142. https://doi.org/10.5772/54742

    Book  Google Scholar 

  • Banaee M, Soltanian S, Sureda A, Gholamhosseini A, Haghi BN, Akhlaghi M, Derikvandy A (2019) Evaluation of single and combined effects of cadmium and micro-plastic particles on biochemical and immunological parameters of common carp (Cyprinus carpio). Chemosphere 36:124335. https://doi.org/10.1016/j.chemosphere.2019.07.066

  • Banerjee BD, Seth V, Ahmed RS (2001) Pesticide-induced oxidative stress: perspective and trends. Rev Environ Health 16(1):1–40

    Article  CAS  Google Scholar 

  • Barrett KE, Barman SM, Boitano S, Brooks H (1989) Ganog’s review of medical physiology, 24 th edn

  • Bass C, Denholm I, Williamson MS, Nauen R (2015) The global status of insect resistance to neonicotinoid insecticides. Pestic Biochem Physiol 121:78–87

    Article  CAS  Google Scholar 

  • Bean TG, Gross MS, Karouna-Renier NK, Henry PFP, Schultz SL, Hladik ML, Kuivila KM, Rattner BA (2019) Toxicokinetics of imidacloprid-coated wheat seeds in Japanese quail (Coturnix japonica) and an evaluation of hazard. Environ Sci Technol 53:3888–3897

    Article  CAS  Google Scholar 

  • Bessey OA, Lowry OH, Btoke MJ (1946) A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum. J Biol Chem 164:321–329

    Article  CAS  Google Scholar 

  • Bhardwaj S, Srivastava MK, Kapoor U, Srivastava LP (2010) A 90 days oral toxicity of imidacloprid in female rats: morphological, biochemical and histopathological evaluations. Food Chem Toxicol 48(5):1185–1190

    Article  CAS  Google Scholar 

  • Blasiak J, Zmyslony M, Jozwiak Z, Rosin J, Szmigielski S (1990) Enhancement or reduction of calcium-ion efflux from brain tissues in vitro following exposure to elf fields depending on intensity of Local geomagnetic field. Electromag Biol Med 9(1):55–60. https://doi.org/10.3109/15368379009027759

    Article  Google Scholar 

  • Blotnick-Rubin E, Anglister L (2018) Fine localization of acetylcholinesterase in the synaptic cleft of the vertebrate neuromuscular junction. Front Mol Neurosci 11:123. https://doi.org/10.3389/fnmol.2018-00123

    Article  Google Scholar 

  • Buckingham S, Lapied B, Corronc HL, Sattelle F (1997) Imidacloprid actions on insect neuronal acetylcholine receptors. J Exp Biol 200(21):2685–2692

    Article  CAS  Google Scholar 

  • Cabiscol-Català E, Tamarit Sumalla J, Ros Salvador J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3(1):3–8

    Google Scholar 

  • Campbell KS, Keller PG, Heinzel LM, Golovko SA, Seeger DR, Golovko MY, Kerby JL (2022) Detection of imidacloprid and metabolites in Northern Leopard frog (Rana pipiens) brains. Sci Total Environ 813:152424

    Article  CAS  Google Scholar 

  • Casida JE (2009) Pest toxicology: the primary mechanisms of pesticide action. Chem Res Toxicol 22(4):609–619

    Article  CAS  Google Scholar 

  • Celik I, Yilmaz Z, Turkoglu V (2009) Hematotoxic and hepatotoxic effects of dichlorvos at sublethal dosages in rats. Environ Toxicol 24(2):128–132

    Article  CAS  Google Scholar 

  • Chakraborti S, Dhalla NS (eds) (2016) Regulation of membrane Na+-K+ ATPase. Springer International Publishing

    Google Scholar 

  • Cheung WWK, Low KW (1975) Ultrastructural and functional differentiation of the midgut of the sugar cane beetle, Protaetia acuminata (F.) (Coleoptera: Cetoniidae). Int J Insect Morphol Embryol 4:349–361. https://doi.org/10.1016/0020-7322(75)90023-9

    Article  Google Scholar 

  • Costa C, Silvari V, Melchini A, Catania S, Heffron JJ, Trovato A, De Pasquale R (2009) Genotoxicity of imidacloprid in relation to metabolic activation and composition of the commercial product. Mutat Res 672:40–44

    Article  CAS  Google Scholar 

  • Darvesh S, Hopkins DA, Geula C (2003) Neurobiology of butyrylcholinesterase. Nat Rev Neurosci 4(2):131–138

    Article  CAS  Google Scholar 

  • Dasari S, Ganjayi MS, Meriga B (2018) Glutathione S-transferase is a good biomarker in acrylamide induced neurotoxicity and genotoxicity. Interdiscip Toxicol 11(2):115

    Article  CAS  Google Scholar 

  • Demsia G, Vlastos D, Goumenou M, Matthopoulos DP (2007) Assessment of the genotoxicity of imidacloprid and metalaxyl in cultured human lymphocytes and rat bone-marrow. Mut Res/Gen Toxicol Environ Mut 634(1-2):32–39

    Article  CAS  Google Scholar 

  • Dornelles MF, Oliveira GT (2014) Effect of atrazine, glyphosate and quinclorac on biochemical parameters, lipid peroxidation and survival in bullfrog tadpoles (Lithobates catesbeianus). Arch Environ Contam Toxicol 66(3):415–429. https://doi.org/10.1007/s00244-013-9967-4

    Article  CAS  Google Scholar 

  • Duysen EG, Li B, Darvesh S, Lockridge O (2007) Sensitivity of butyrylcholinesterase knockout mice to (–)-huperzine A and donepezil suggests humans with butyrylcholinesterase deficiency may not tolerate these Alzheimer’s disease drugs and indicates butyrylcholinesterase function in neurotransmission. Toxicol 233:60–69

    Article  CAS  Google Scholar 

  • Duzguner V, Erdogan S (2010) Acute oxidant and inflammatory effects of imidacloprid on the mammalian central nervous system and liver in rats. Pestic Biochem Physiol 97:13–18. https://doi.org/10.1016/j.pestbp.2009.11.008

    Article  CAS  Google Scholar 

  • Duzguner V, Erdogan S (2012) Chronic exposure to imidacloprid induces inflammation and oxidative stress in the liver and central nervous system of rats. Pestic Biochem Physiol 104(1):58–64

    Article  CAS  Google Scholar 

  • EFSA, European Food Safety Authority Scientific Report (2008) Conclusion regarding the peer review of the pesticide risk assessment of the active substance imidacloprid 148:1-120

  • Eissa OS (2004) Protective effect of vitamin C and glutathione against the histopathological changes induced by imidacloprid in the liver and testis of Japanese quail. Egy J Hosp Med 16:39–54

    Article  CAS  Google Scholar 

  • Elbert A, Haas M, Thielert W, Nauen R (2007) Applied aspects of neonicotinoid uses. In: Proceeding XVI International Plant Protection Congress, Glasgow, UK, Vol 3, pp 620-621

  • Elbert A, Haas M, Springer B, Thielert W, Nauen R (2008) Applied aspects of neonicotinoid uses in crop protection. Pest Manag Sci: formerly Pestic Sci 64(11):1099–1105

    Article  CAS  Google Scholar 

  • El-Gendy KS, Aly NM, Mahmoud FH, Kenawy A, El-Sebae AKH (2010) The role of vitamin C as antioxidant in protection of oxidative stress induced by imidacloprid. Food Chem Toxicol 48(1):215–221

    Article  CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of AChE activity. Biochem Pharmacol 7:88–95

    Article  CAS  Google Scholar 

  • Emam H, Ahmed E, Abdel-Daim M (2018) Antioxidant capacity of omega-3-fatty acids and vitamin E against imidacloprid-induced hepatotoxicity in Japanese quails. Environ Sci Pollut Res 25:11694–11702. https://doi.org/10.1007/s11356-018-1481-9

    Article  CAS  Google Scholar 

  • Eng ML, Stutchbury BJM, Morrissey CA (2017) Imidacloprid and chlorpyrifos insecticides impair migratory ability in a seed-eating songbird. Sci Rep 7:15176

    Article  Google Scholar 

  • Englert D, Zubrod J. P, Link M, Mertins S, Schulz R, Bundschuh M (2017) Does waterborne exposure explain effects caused by neonicotinoid-contaminated plant material in aquatic systems? Environ Sci Technol 51(10):5793-5802

  • Ertl HM, Mora MA, Brightsmith DJ, Navarro-Alberto JA (2018) Potential impact of neonicotinoid use on Northern bobwhite (Colinus virginianus) in Texas: A historical analysis. PLoS One 13(1)

  • Etemadi-Aleagha A, Akhgari M, Abdollahi M (2002) A brief review on oxidative stress and cardiac diseases. Mid East Pharmacol 10:8–9

    Google Scholar 

  • Farr SB, Kogoma T (1991) Oxidative stress response in Escherichia coli and Salmonella typhimurium. J Bacteriol 123:570–579

    Google Scholar 

  • Feng S, Kong Z, Wang X, Peng P, Zeng EY (2005) Assessing the genotoxicity of imidacloprid and RH-5849 in human peripheral blood lymphocytes in vitro with comet assay and cytogenetic tests. Ecotoxicol Environ Saf 61(2):239–246

    Article  CAS  Google Scholar 

  • Ffrench-constant RH, Daborn PJ, Le Goff G (2004) The genetics and genomics of insecticide resistance. Trends Genet 20(3):163–170

    Article  CAS  Google Scholar 

  • Finney DJ (1952) Probit analysis, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Ghosh MN (1984) Toxicity studies. Fundamentals of Experimental Pharmacology. Scientific Book Agency, Calcutta, p 153

    Google Scholar 

  • Gibbons D, Morrissey C, Mineau P (2015) A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ Sci Pollut Res 22(1):103–118

    Article  CAS  Google Scholar 

  • Golub EE, Boesze-Battagli K (2007) The role of alkaline phosphatase in mineralization. Curr Opin Orthop 18(5):444–448. https://doi.org/10.1097/BCO.0b013e3282630851

    Article  Google Scholar 

  • Gomes de Faria DB, Montalvão MF, Moreira de Souza J, Mendes B, Malafaia G, Rodrigues AS (2018) Analysis of various effects of abamectin on erythrocyte morphology in Japanese quails (Coturnix japonica). Environ Sci Pollut Res 25:2450–2456. https://doi.org/10.1007/s11356-017-0677-8

    Article  CAS  Google Scholar 

  • Goulson D (2013) An overview of the environmental risks posed by neonicotinoid insecticides. J Appl Ecol 50(4):977–987

    Article  Google Scholar 

  • Guthery FS (2006) On bobwhites (No. 27). Oldenbourg Verlag. Texas A&M University Press, College Station, p 213

    Google Scholar 

  • Hai CM, Murphy RA (1988) Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Amer J Phys-Cell Phys 254(1):C99–C106

    CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (2015) Free radicals in biology and medicine, 2nd edn. Oxford University Press, Clarendon. https://doi.org/10.1093/acprof:oso/9780198717478.001.0001

    Book  Google Scholar 

  • Hallmann CA, Foppen RP, van Turnhout CA, de Kroon H, Jongejans E (2014) Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature 511(7509):341–343

    Article  CAS  Google Scholar 

  • Hancock GA (1996) NTN 33893 technical: an acute oral LD50 with mallards. Bayer Corporation, Kansas City, Missouri. Report No. 107354. 32 pp

  • Hatami M, Banaee M, Nematdoost Haghi B (2019) Sub-lethal toxicity of chlorpyrifos alone and in combination with polyethylene glycol to common carp (Cyprinus carpio). Chemosphere 219:981–988. https://doi.org/10.1016/j.chemosphere.2018.12.077

    Article  CAS  Google Scholar 

  • Hayes JD, Mclellan LI (1999) Glutathione and glutathione-dependent enzymes represent a coordinately regulated defence against oxidative stress. Free Radic Res 31(4):273–300

    Article  CAS  Google Scholar 

  • Hidalgo E, Demple B (1995) Regulation of gene expression in Escherichia coli. In: Lin EC, Luchi S (eds) Adaptive response to oxidative stress: the sox RS and oxy R regulons. RG Landes Co, Austin, pp 433–450

    Google Scholar 

  • Hopwood J, Vaughan M, Shepherd M, Biddinger D, Mader E, Black SH, Mazzacano C (2012) Are neonicotinoids killing bees. A review of research into the effects of neonicotinoid insecticides on bees, with recommendations for action. Xerces Society for Invertebrate Conservation, Portland, OR, p 32. Available at: www.xerces.org/beyondthe-birds-and-the-bees

  • Huss D, Poynter G, Lansford R (2008) Japanese quail, Coturnix japonica, as a laboratory animal model. Lab Anim 37(11):513

    Article  Google Scholar 

  • Iacovino LG, Rossi M, Di Stefano G, Rossi V, Binda C, Brigotti M, Tomaselli F, Pasti AP, Dal Piaz F, Cerini S, Hochkoeppler A (2022) Allosteric transitions of rabbit skeletal muscle lactate dehydrogenase induced by pH-dependent dissociation of the tetrameric enzyme. Biochimie 199:23–35

    Article  CAS  Google Scholar 

  • IFCC, International Federation of Clinical Chemistry (1986) Bergmeyer HU, Herder M, Rej RJ Clin Chem. Clin Biochem 24(7):497–510

    Google Scholar 

  • Ivanova R, Hristev H, Hoha GV (2013) Study on the effect of actara and confidor on birdssubmited to chronic intoxication. Lucrări Științifice-Universitatea de Științe Agricoleși Medicină Veterinară, Seria Zootehnie 60:244-246

  • Janner DE, Gomes NS, Poetini MR, Poleto KH, Musachio EAS, Polet de Almeida F, Amador EC, Reginaldo JC, Ramborger BP, Roehrs R, Prigol M, Guerra GP (2021) Oxidative stress and decreased dopamine levels induced by imidacloprid exposure cause behavioral changes in a neurodevelopmental disorder model in Drosophila melanogaster. NeuroToxicol 85:79–89

    Article  CAS  Google Scholar 

  • Jeschke P, Nauen R, Schindler M, Elbert A (2011) Overview of the status and global strategy for neonicotinoids. J Agric Food Chem 59(7):2897–2908

    Article  CAS  Google Scholar 

  • Jeschke P, Nauen R, Beck ME (2013) Nicotinic acetylcholine receptor agonists: a milestone for modern crop protection. Angew Chem Int Ed 52(36):9464–9485

    Article  CAS  Google Scholar 

  • Kamel S, Cherif A (2017) The effects of two insecticides Imidacloprid and Chlorpyrifos on male quail, Coturnix japonica. Int J Pharm Res Allied Sci 6(1):189–201

    Google Scholar 

  • Kammon AM, Brar RS, Banga HS, Sodhi S (2010) Patho-biochemical studies on hepatotoxicity and nephrotoxicity on exposure to chlorpyrifos and imidacloprid in layer chickens. Veterinarski Arhiv 80(5):663–672

    CAS  Google Scholar 

  • Kapoor U, Srivastava MK, Bhardwaj S, Srivastava LP (2010) Effect of imidacloprid on antioxidant enzymes and lipid peroxidation in female rats to derive it’s No Observed Effect Level (NOEL). J Toxicol Sci 35(4):577–581

    Article  CAS  Google Scholar 

  • Karabay NU, Oguz MG (2005) Cytogenetic and genotoxic effects of the insecticides, imidacloprid and methamidophos. Genet Mol Res 4(4):653–662

    CAS  Google Scholar 

  • Karatas AD (2009) Severe central nervous system depression in a patient with acute imidacloprid poisoning. Amer J Emer Med 27(9):1171–1175

    Article  Google Scholar 

  • Khalil SR, Awad A, Mohammed HH, Nassan MA (2017) Imidacloprid insecticide exposure induces stress and disrupts glucose homeostasis in male rats. Environ Toxicol Pharmacol 55:165–174

    Article  CAS  Google Scholar 

  • Kinoshita PF, Leite JA, Orellana AMM, Vasconcelos AR, Quintas LEM, Kawamoto EM, Scavone C (2016) The influence of Na+, K+-ATPase on glutamate signaling in neurodegenerative diseases and senescence. Front Physiol 7:195. https://doi.org/10.3389/fphys.2016.00195

    Article  Google Scholar 

  • Kirstein B, Chambers TJ, Fuller K (2006) Secretion of tartrate-resistant acid phosphatase by osteoclasts correlates with resorptive behavior. J Cell Biochem 98(5):1085–1094

    Article  CAS  Google Scholar 

  • Koch RB (1969) Inhibition of animal tissue ATP-ase activities by chlorinated hydrocarbon pesticides. Chemico-Biol Int 1(2):199–209

    Article  CAS  Google Scholar 

  • Krieger R (ed) (2010) Hayes’ handbook of pesticide toxicology, vol 1. Academic Press, San Diego

    Google Scholar 

  • Kumar A, Husain MM, Mukhtar H, Murti CK (1980) Hepatic and extra-hepatic glutathione-S-transferase activity in wild pigeons (Columba livia). J Biosci 2(3):181–189

    Article  CAS  Google Scholar 

  • Kumar A, Tomar M, Kataria SK (2014) Effect of sub-lethal doses of imidacloprid on histological and biochemical parameters in female Albino mice. ISOR J Environ Sci Toxicol Food Technol 8:9–15

    CAS  Google Scholar 

  • Kumari K, Sinha RC (2010) Biochemical changes in the toad, Bufo melanostictus as a function of methyl parathion: ascorbic acid as a biomarker of oxidative stress. Вісник Харківського національного університету імені ВН Каразіна. Серія: Біологія 12:90–97

    Google Scholar 

  • Li Z, Duan J, Chen L, Wang Y, Qin Q, Dang X, Zhou Z (2022) Melatonin enhances the antioxidant capacity to rescue the honey bee Apis mellifera from the ecotoxicological effects caused by environmental imidacloprid. Ecotoxicol Environ Saf 239:113622

    Article  CAS  Google Scholar 

  • Lin-Quan G, Jun-Huan H, **-Cai W, Guo-Qing Y, Hainan G (2009) Insecticide-induced changes in protein, RNA, and DNA contents in ovary and fat body of female Nilaparvata lugens. J Econ Entomol 102(4):1506–1514

    Article  Google Scholar 

  • Lionetto MG, Caricato R, Calisi A, Giordano ME, Schettino T (2013) Acetylcholinesterase as a biomarker in environmental and occupational medicine: new insights and future perspectives. BioMed Res Intern 2013:321213. https://doi.org/10.1155/2013/321213

    Article  CAS  Google Scholar 

  • Lonare M, Kumar M, Raut S, Badgujar P, Doltade S, Telang A (2014) Evaluation of imidacloprid-induced neurotoxicity in male rats: a protective effect of curcumin. Neurochem Int 78:122–129

    Article  CAS  Google Scholar 

  • Lopez-Antia A, Ortiz-Santaliestra ME, Mougeot F, Mateo R (2012) Experimental exposure of red-legged partridges (Alectoris rufa) to seeds coated with imidacloprid, thiram and difenoconazole. Ecotoxicol 22(1):125–138

    Article  Google Scholar 

  • Lopez-Antia A, Ortiz-Santaliestra ME, Mougeot F, Mateo R (2015) Imidacloprid-treated seed ingestion has lethal effect on adult partridges and reduces both breeding investment and offspring immunity. Environ Res 136:97–107

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  Google Scholar 

  • Lozano-Paniagua D, Parron T, Alarcon R, Requena M, Lopez-Guarnido O, Lacasana M, Hernandez AF (2021) Evaluation of conventional and non-conventional biomarkers of liver toxicity in greenhouse workers occupationally exposed to pesticides. Food Chem Toxicol 151:112127

    Article  CAS  Google Scholar 

  • Lushchak VI (2012) Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids 2010:26

    Google Scholar 

  • Lv Y, Bing Q, Lv Z, Xue J, Li S, Han B, Zhang Z (2020) Imidacloprid-induced liver fibrosis in quails via activation of the TGF-β1/Smad pathway. Sci Total Environ 705:135915

    Article  CAS  Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(3):469–474

    Article  CAS  Google Scholar 

  • Matsuda K, Buckingham SD, Kleier D, Rauh JJ, Grauso M, Sattelle DB (2001) Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol Sci 22(11):573–580

    Article  CAS  Google Scholar 

  • Mineau P, Palmer C (2013) Neonicotinoid insecticides and birds: the impact of the nation’s most widely used insecticides on birds. Amer Bird Conser 2013:1–96

    Google Scholar 

  • Moeen D, Amer AM, Ismail NH, Ali EH (2018) Possible action of grape seed oil on brain toxicity induced by methomyl or imidacloprid of male rats. J Sci Res Sci 35(part 1):250–272

    Google Scholar 

  • Nair V, Turner GE (1984) The thiobarbituric acid test for lipid peroxidation structure of the adduct with malondialdehyde. Lipids 19:84–95

    Article  Google Scholar 

  • OECD, Organization for Economic Co-operation and Development (2010) Test No. 223: avian acute oral toxicity test, OECD Guidelines for the Testing of Chemicals, Section 2

  • Orlewick MS, Vovchuk E (2012) Alanine aminotransferase [on line]. Available at http://emedicine.medscape.com/article/2087247-overview.  Accessed 14.11.2013

  • Osman KA, Ezz El-Din EM, Ahmed NS, El-Seedy AS (2021) Effect of N-acetylcysteine on attenuation of chlorpyrifos and its methyl analogue toxicity in male rats. Toxicol 461:152904

    Article  CAS  Google Scholar 

  • Owens CWI, Belcher RV (1965) A colorimetric micro-method for the determination of glutathione. Biochem J 94(3):705

    Article  CAS  Google Scholar 

  • Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30(1):11–26

    Article  CAS  Google Scholar 

  • Prasanna MN, Vardhani VV (2013) Effect of imidacloprid on the biochemical contents of kidneys in male Swiss Albino mice. The Bioscan 8(3):1069–1074

    CAS  Google Scholar 

  • Qadir S, Latif A, Ali M, Iqbal F (2014) Effects of imidacloprid on the hematological and serum biochemical profile of Labeo rohita. Pakistan J Zool 46(4):1085–1090

    CAS  Google Scholar 

  • Rawi SM, Al-Logmani AS, Hamza RZ (2019) Neurological alterations induced by formulated imidacloprid toxicity in Japanese quails. Metab Brain Dis 34(2):443–450

    Article  CAS  Google Scholar 

  • Roth EF Jr, Gilbert HS (1984) The pyrogallol assay for superoxide dismutase: absence of a glutathione artifact. Anal Biochem 137(1):50–53

    Article  CAS  Google Scholar 

  • Russell RW, Overstreet DH (1987) Mechanisms underlying sensitivity to organophosphorus anticholinesterase compounds. Prog Neurobiol 28(2):97–129

    Article  CAS  Google Scholar 

  • Sakas PS (2002) Essentials of avian medicine: a guide for practitioners, 2nd edn. American Animal Hospital Association Press Publ, Niles

    Google Scholar 

  • Salvaggio A, Antoci F, Messina A, Ferrante M, Copat C, Ruberto C, Brundo MV (2018) Teratogenic effects of the neonicotinoid thiacloprid on chick embryos (Gallus gallus domesticus). Food Chem Toxicol 118:812–820

    Article  CAS  Google Scholar 

  • Sasidhar-Babu N, Kumar AA, Reddy AG, Amaravathi P, Hemanth I (2014) Chronic experimental feeding of imidacloprid induced oxidative stress and amelioration with vitamin C and Withan iasomnifera in layer birds. Int J Sci Environ Technol 3(5):1679–1684

    Google Scholar 

  • Schneider WC (1945) Phosphorus compounds in animal tissues. II. The nucleic acid content of homologous normal and cancer tissues. Cancer Res 5(12):717–721

    CAS  Google Scholar 

  • Schumann G, Bonora R, Ceriotti F, Clerc-Renaud P, Ferrero CA, Férard G, Franck PF, Gella FJ, Hoelzel W, Jørgensen PJ, Kanno T, Kessner A, Klauke R, Kristiansen N, Lessinger JM, Linsinger TP, Misaki H, Panteghini M, Pauwels J et al (2002) IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C. Part 3. Reference procedure for the measurement of catalytic concentration of lactate dehydrogenase. Clin Chem Lab Med 4:643–648

    Google Scholar 

  • Senanayake SSHMML, Ranasinghe JGS, Waduge R, Nizanantha K, Alexander PABD (2015) Changes in the serum enzyme levels and liver lesions of broiler birds reared under different management conditions. Tropical Agri Res 26(4):584–595

    Article  Google Scholar 

  • Sibiya I, Poma G, Cuykx M, Covaci A, Daso AP, Okonkwo J (2019) Targeted and nontargetscreening of persistent organic pollutants and organophosphorus flame retardants in leachate and sediment from landfill sites in Gauteng Province, South Africa. Sci Total Environ 653:1231–1239. https://doi.org/10.1016/j.scitotenv.2018.10.356

    Article  CAS  Google Scholar 

  • Silver PJ, Stull JT (1982) Regulation of myosin light chain and phosphorylase phosphorylation in tracheal smooth muscle. J Biol Chem 257(11):6145–6150

    Article  CAS  Google Scholar 

  • Singh SK, Dixit T (2014) Pharmacogenomics in anesthesia. In: Padmanabhan S (ed) Handbook of pharmacogenomics and stratified medicine. Academic Press, pp 815–833

    Chapter  Google Scholar 

  • Sivakumari R, Manavalaramanujam R, Ramesh M, Lakshmi R (1997) Cypermethrin toxicity: sublethal effects on enzyme activities in a freshwater fish, Cyprinus carpio (Var. Communis). J Environ Biol 18(2):21125

    Google Scholar 

  • Sodhi S, Sharma A, Brar APS, Brar RS (2008) Effect of α tocopherol and selenium on antioxidant status, lipid peroxidation and hepatopathy induced by malathion in chicks. Pestic Biochem Physiol 90(2):82–86

    Article  CAS  Google Scholar 

  • Soujanya S, Lakshman M, Kumar AA, Reddy AG (2013) Evaluation of the protective role of vitamin C in imidacloprid-induced hepatotoxicity in male Albino rats. J Nat Sci Biol Med 4(1):63

    Article  CAS  Google Scholar 

  • Sreenivasan RS, Krishna Moorthy P, Deecaraman M (2011) Cypermethrin induced toxicity to phosphatases and dehydrogenases in gills and hemolymph of fresh water crab, Spiralothelphusa hydrodroma (herbst). Int J Biol Med Res 2:784–788

    Google Scholar 

  • Stafford TR (1991) NTN 33893 1.5 G: an acute oral LD50 with house sparrows, Passer domesticus. Mobay Corporation, Kansas City

    Google Scholar 

  • Stambaugh R, Post D (1966) Substrate and product inhibition of rabbit muscle lactic dehydrogenase heart (H4) and muscle (M4) isozymes. J Biol Chem 241(7):1462–1467

    Article  CAS  Google Scholar 

  • Stewart AG, Laming EM, Sobti M, Stock D (2014) Rotary ATPases-dynamic molecular machines. Curr Opin Struct Biol 25:40–48

    Article  CAS  Google Scholar 

  • Surai PF (2016) Antioxidants systems in poultry biology: superoxide dismutase. J Anim Res Nut 1(1):8. https://doi.org/10.21767/2572-5459.100008

    Article  Google Scholar 

  • Toll PA (1990a) Technical NTN 33893: sub-acute dietary LC50 with bobwhite quail. Miles, Inc., Stilwell, KS. 39 pp. Miles Report, (1995), No. 100241

  • Toll PA (1990b) Technical NTN 33893: a one-generation reproduction study with bobwhite quail. Miles, Inc., Stilwell, KS. 114 pp. Miles Report, (1995), No. 101203

  • Tomizawa M, Casida JE (2005) Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Pharmacol Toxicol 45:247–268

    Article  CAS  Google Scholar 

  • Tomlin CDS (2002) Imidacloprid (138261-41-3). The e-Pesticide manual. British Crop Protection Council, Surrey UK, 12th Ed, version 2.1

  • Tonietto BD, Laurentino AOML, Costa-Valle MT, Cestonaro LV, Antunes BP, Sates C, Guimarães dos Santos N, Dallegrave E, Garcia SC, Leal MB, Arbo MD (2022) Imidacloprid-based commercial pesticide causes behavioral, biochemical, and hematological impairments in Wistar rats. Environ Toxicol Pharmacol 94:103924

    Article  CAS  Google Scholar 

  • Toor HK, Sangha GK, Khera KS (2013) Imidacloprid induced histological and biochemical alterations in liver of female Albino rats. Pestic Biochem Physiol 105(1):1–4

    Article  CAS  Google Scholar 

  • USEPA, United States Environmental Protection Agency (2003) Imidacloprid; pesticide tolerances. Federal Register June 13, 2003. Vol. 68, No. 114.

  • Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7(1):65–74. https://doi.org/10.2174/157015909787602823

    Article  CAS  Google Scholar 

  • Vessey DA, Boyer TD (1984) Differential activation and inhibition of different forms of rat liver glutathione S-transferase by the herbicides 2, 4-dichlorophenoxyacetate (2,4-D) and 2,4,5-trichlorophenoxyacetate (2,4,5-T). Toxicol Appl Pharmacol 73(3):492–499

    Article  CAS  Google Scholar 

  • Vieira CED, Pérez MR, Acayaba RDA, Raimundo CCM, dos Reis Martinez CB (2018) DNA damage and oxidative stress induced by imidacloprid exposure in different tissues of the Neotropical fish Prochilodus lineatus. Chemosphere 195:125–134

    Article  CAS  Google Scholar 

  • Vohra P, Khera KS (2015) A three generation study with effect of imidacloprid in rats: biochemical and histopathological investigation. Toxicol Int 22(1):119

    Article  CAS  Google Scholar 

  • Wang R, Wang Z, Yang H, Wang Y, Deng A (2011) Highly sensitive and specific detection of neonicotinoid insecticide imidacloprid in environmental and food samples by a polyclonal antibody-based enzyme-linked immunosorbent assay. J Sci Food Agric 92(6):1253–1260

    Article  Google Scholar 

  • Wankhede V, Hedau M, Ingole RS, Hajare SW, Wade MR (2017) Histopathological alterations induced by subacute imidacloprid toxicity in Japanese quails and its amelioration by Butea monosperma. J Pharmacog Phytochem 6(3):252–225

    CAS  Google Scholar 

  • Weber R, Niehus B (1961) The activity of the acid phosphatase in the tail of the Xenopus larvae during growth and metamorphosis. Helv Physiol pharmacol Acta 19:103

    CAS  Google Scholar 

  • Weil CS (1952) Tables for convenient calculation of median-effective dose(LD50 or ED50) and instructions in their use. Biom 8:249

  • Wexler P, Abdollahi M, Peyster AD, Gad SC, Greim H, Harper S, Moser VC, Ray S, Tarazona J, Wiegand TJ (2014) Encyclopedia of toxicology, vol 4, 3rd edn. Academic Press/Elsevier, London, p 5220 ISBN: 978-0123864543

    Google Scholar 

  • Wilson BW (2010) Cholinesterases. In: Hayes’ Handbook of Pesticide Toxicology (3rd Ed), Krieger R (Ed.), Chapter 68, Pages 1457-1478, Academic Press. https://doi.org/10.1016/B978-0-12-374367-1.00068-9

  • Yang YX, Lin RH, Li Z, Wang AY, Xue C, Duan AL, Zhao M, Zhang JH (2021) Function analysis of P450 and GST genes to imidacloprid in Aphis craccivora (Koch). Front Physiol 11:624287

    Article  Google Scholar 

  • Yi S-X, Adams TS (2001) Age- and diapause-related acid and alkaline phosphatase activities in the intestine and malpighian tubules of the Colorado potato beetle, Leptinotarsa decemlineata (Say). Arch Insect Biochem Physiol 46:152–163. https://doi.org/10.1002/arch.1025

    Article  CAS  Google Scholar 

  • Zaror C, Segura C, Mansilla H, Mondaca MA, González P (2008) Effect of temperature on Imidacloprid oxidation by homogeneous photo-Fenton processes. Water Sci Technol 58(1):259–265

    Article  CAS  Google Scholar 

  • Zeid EHA, Alam RT, Ali SA, Hendawi MY (2019) Dose-related impacts of imidacloprid oral intoxication on brain and liver of rock pigeon, Columba liviadomestica, residues analysis in different organs. Ecotoxicol Environ Saf 167:60–68

    Article  Google Scholar 

  • Zhang J, Shen H, Wang X, Wu J, Xue Y (2004) Effects of chronic exposure of 2, 4-dichlorophenol on the antioxidant system in liver of freshwater fish, Carassius auratus. Chemosphere 55(2):167–174

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: N.S.A., K.A.O. Analysis: A.A., A.S.El. Statistical analysis: K.A.O. Drafting of the manuscript: K.A.O., N.S.A. Critical revision of the manuscript for important intellectual content: K.A.O.

Corresponding author

Correspondence to Khaled A. Osman.

Ethics declarations

Ethical approval

All animal housing, handling, breeding, and bioassays were conducted with the guidelines of the Institutional Animal Care and Use Committee (IACUC), Alexandria University, Egypt.

Consent to participate

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent for publication

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Plant reproducibility

This article does not contain any studies with plant reproducibility performed by any of the authors.

Clinical trial registration

This study does not contain any studies with clinical trials performed by any of the authors.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osman, K.A., Shaaban, M.M.I. & Ahmed, N.S. Biomarkers of imidacloprid toxicity in Japanese quail, Coturnix coturnix japonica. Environ Sci Pollut Res 30, 5662–5676 (2023). https://doi.org/10.1007/s11356-022-22580-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-22580-1

Keywords

Navigation