Log in

Estimation and uncertainty analysis of groundwater quality parameters in a coastal aquifer under seawater intrusion: a comparative study of deep learning and classic machine learning methods

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Excessive withdrawal of groundwater for agricultural irrigation can cause seawater intrusion into coastal aquifers. Such a case will in turn results in deterioration of irrigation water quality. Determination of irrigation water quality with traditional methods is a time-consuming and costly process. However, machine learning algorithms can be useful tools for modeling and estimating groundwater quality used for irrigation water purposes. In this study, TDS, PS, SAR, and Cl parameters of groundwater were estimated with models based on EC and pH variables. For this purpose, prediction performances of two different deep learning methods (convolutional neural network (CNN) and deep neural network (DNN)) and two different classical machine learning (Random Forest (RF) and extreme gradient boosting (XGBoost)) methods were compared. In addition, predictive uncertainty of the models was determined by quantile regression (QR) analysis. Performance criteria and results of uncertainty analysis revealed that CNN (in testing phase, NSE = 0.95 for TDS, NSE = 0.96 for PS, NSE = 0.67 for SAR and NSE = 0.93 for CI) and DNN (in testing phase, NSE = 0.91 for TDS, NSE = 0.91 for PS, NSE = 0.57 for SAR and NSE = 0.94 for Cl) models had quite a close performance in estimation of TDS, PS, SAR, and Cl parameters and higher than the other two classical machine learning methods. As a result, the CNN model can be considered the best performing model in estimating all quality parameters due to the highest NSE and lowest RMSE values. In addition, the Taylor diagram showed that the values estimated using the CNN model had the highest correlation with the measured data. It was determined that the model with the lowest uncertainty based on the PICP statistics was DNN, followed by the CNN model. However, the CNN model has predicted outliers more accurately. Present findings proved that deep learning models could offer efficient tools for predicting irrigation water quality parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Not applicable.

References

Download references

Funding

This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) (Grant No. 214O706).

Author information

Authors and Affiliations

Authors

Contributions

Mehmet Taşan: sampling, analyses, methodology, writing – original draft, writing – review & editing. Sevda Taşan: methodology, writing – original draft, writing – review & editing. Yusuf Demir: conceptualization, project administration, funding acquisition.

Corresponding author

Correspondence to Mehmet Taşan.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible editor: **anliang Yi

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taşan, M., Taşan, S. & Demir, Y. Estimation and uncertainty analysis of groundwater quality parameters in a coastal aquifer under seawater intrusion: a comparative study of deep learning and classic machine learning methods. Environ Sci Pollut Res 30, 2866–2890 (2023). https://doi.org/10.1007/s11356-022-22375-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-22375-4

Keywords

Navigation