Log in

Specific characteristics of the microbial community in the groundwater fluctuation zone

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract 

Groundwater level fluctuation is a common natural phenomenon that causes alternate changes in oxygen, moisture, and biogeochemical processes in sediments. Microbes are sensitive to these environmental changes. Therefore, a specific microbial community is proposed to form in the groundwater fluctuation zone (GFZ). The vertical distributions of microbial abundance, diversity, and functional microbes and genes in sediment profiles were investigated, focusing on the GFZ, using high-throughput 16S rRNA gene sequencing, qPCR, and the Functional Annotation of Prokaryotic Taxa (FAPROTAX) approach. The relationships between chemical variables and microbial community structure were investigated by redundancy analysis (RDA). Results showed that the microbial abundance and microbial community richness and diversity were higher in the sediments of the GFZ. The nitrate reducers prefer to stay just below the groundwater level in the GFZ. The predominant microbes in the GFZ functioned as nitrifiers and Fe-oxidizers. The specific community in the GFZ is mainly related to NO3 and Fe(III) in the sediment. Consequently, the biochemical processes nitrification and Fe- and Mn-oxidation sequentially happen above the nitrate-reduction zone near the groundwater level in the GFZ. These results provide new knowledge in the biogeochemistry cycle of the GFZ and its disturbance on the vertical distribution and transport of biogenic elements and contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References 

  • Braun B, Schroder J, Knecht H, Szewzyk U (2016) Unraveling the microbial community of a cold groundwater catchment system. Water Res 107:113–126

    CAS  Google Scholar 

  • Bryant LD, Little JC, Burgmann H (2012) Response of sediment microbial community structure in a freshwater reservoir to manipulations in oxygen availability. FEMS Microbiol Ecol 80(1):248–263

    CAS  Google Scholar 

  • Chen R, Liu H, Zhang P, Zhao L, Ding K, Yuan S (2019) Attenuation of Fe(III)-reducing bacteria during table fluctuation of groundwater containing Fe2+. Sci Total Environ 694:133660

    CAS  Google Scholar 

  • Chen X, Lu J, Zhu J, Liu C (2020) Characteristics of denitrifying bacteria in different habitats of the Yongding River wetland. China J Environ Manage 275:111273

    CAS  Google Scholar 

  • Crump BC, Kling GW, Bahr M, Hobbie JE (2003) Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Appl Environ Microbiol 69(4):2253–2268

    Google Scholar 

  • Deemer BR, Harrison JA (2019) Summer redox dynamics in a eutrophic reservoir and sensitivity to a summer’s end drawdown event. Ecosystems 22(7):1618–1632

    CAS  Google Scholar 

  • Di Canito A, Zampolli J, Orro A, D’Ursi P, Milanesi L, Sello G, Steinbuchel A, Di Gennaro P (2018) Genome-based analysis for the identification of genes involved in o-xylene degradation in Rhodococcus opacus R7. BMC Genomics 19(1):587

    Google Scholar 

  • Ehrlich HL, Newman DK (2015) Geomicrobiology. CRC Press, Boca Raton

    Google Scholar 

  • Elken E, Heinaru E, Joesaar M, Heinaru A (2020) Formation of new PHE plasmids in pseudomonads in a phenol-polluted environment. Plasmid 110:102504

    CAS  Google Scholar 

  • Farnsworth CE, Voegelin A, Hering JG (2012) Manganese oxidation induced by water table fluctuations in a sand column. Environ Sci Technol 46(1):277–284

    CAS  Google Scholar 

  • Field EK, Kato S, Findlay AJ, MacDonald DJ, Chiu BK, Luther GW, Chan CS (2016) Planktonic marine iron oxidizers drive iron mineralization under low-oxygen conditions. Geobiology 14(5):499–508

    CAS  Google Scholar 

  • Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, Dauphin P, Hammond D, Hartman B, Maynard V (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta 43(7):1075–1090

    CAS  Google Scholar 

  • Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451(7176):293–296

    CAS  Google Scholar 

  • Gulay A, Musovic S, Albrechtsen HJ, Al-Soud WA, Sorensen SJ, Smets BF (2016) Ecological patterns, diversity and core taxa of microbial communities in groundwater-fed rapid gravity filters. ISME J 10(9):2209–2222

    CAS  Google Scholar 

  • Hu A, Wang H, Li J, Liu J, Chen N, Yu CP (2016) Archaeal community in a human-disturbed watershed in southeast China: diversity, distribution, and responses to environmental changes. Appl Microbiol Biotechnol 100(10):4685–4698

    CAS  Google Scholar 

  • Huang J, Yang J, Jiang H, Wu G, Liu W, Wang B, **ao H, Han J (2020) Microbial responses to simulated salinization and desalinization in the sediments of the Qinghai-Tibetan Lakes. Front Microbiol 11:1772

    Google Scholar 

  • Jia M, Bian X, Yuan S (2017) Production of hydroxyl radicals from Fe(II) oxygenation induced by groundwater table fluctuations in a sand column. Sci Total Environ 584–585:41–47

    Google Scholar 

  • Jiang L, Zheng Y, Peng X, Zhou H, Zhang C, **ao X, Wang F (2009) Vertical distribution and diversity of sulfate-reducing prokaryotes in the Pearl River estuarine sediments. Southern China FEMS Microbiol Ecol 70(2):93–106

    Google Scholar 

  • Kao CM, Chen CS, Tsa FY, Yang KH, Chien CC, Liang SH, Yang CA, Chen SC (2010) Application of real-time PCR, DGGE fingerprinting, and culture-based method to evaluate the effectiveness of intrinsic bioremediation on the control of petroleum-hydrocarbon plume. J Hazard Mater 178(1–3):409–416

    CAS  Google Scholar 

  • Kao CM, Chen CY, Chen SC, Chien HY, Chen YL (2008) Application of in situ biosparging to remediate a petroleum-hydrocarbon spill site: field and microbial evaluation. Chemosphere 70(8):1492–1499

    CAS  Google Scholar 

  • Kato S, Chan C, Itoh T, Ohkuma M (2013) Functional gene analysis of freshwater iron-rich flocs at circumneutral pH and isolation of a stalk-forming microaerophilic iron-oxidizing bacterium. Appl Environ Microbiol 79(17):5283–5290

    CAS  Google Scholar 

  • Lai TV, Ryder MH, Rathjen JR, Bolan NS, Croxford AE, Denton MD (2021) Dissimilatory nitrate reduction to ammonium increased with rising temperature. Biol Fert Soils 57(3):363–372

    CAS  Google Scholar 

  • Li Z, Cupples AM (2021) Diversity of nitrogen cycling genes at a Midwest long-term ecological research site with different management practices. Appl Microbiol Biotechnol 105(10):4309–4327

    CAS  Google Scholar 

  • Lipson DA, Raab TK, Parker M, Kelley ST, Brislawn CJ, Jansson J (2015) Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils. Environ Microbiol Rep 7(4):649–657

    CAS  Google Scholar 

  • Liu C, Du Y, Chen K, Ma S, Chen B, Lan Y (2019) Contrasting exchanges of nitrogen and phosphorus across the sediment-water interface during the drying and re-inundation of littoral eutrophic sediment. Environ Pollut 255(Pt 3):113356

    CAS  Google Scholar 

  • Liu Y, Ren Z, Qu X, Zhang M, Yu Y, Zhang Y, Peng W (2020) Microbial community structure and functional properties in permanently and seasonally flooded areas in Poyang Lake. Sci Rep 10(1):4819

    CAS  Google Scholar 

  • Louca S, Parfrey LW, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. Science 353(6305):1272–1277

    CAS  Google Scholar 

  • Lu L, Wan Z, Luo T, Fu Z, ** Y (2018) Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Sci Total Environ 631–632:449–458

    Google Scholar 

  • Ludemann H, Arth I, Liesack W (2000) Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores. Appl Environ Microbiol 66(2):754–762

    CAS  Google Scholar 

  • Lueder U, Druschel G, Emerson D, Kappler A and Schmidt C (2018) Quantitative analysis of O2 and Fe2+ profiles in gradient tubes for cultivation of microaerophilic Iron(II)-oxidizing bacteria. FEMS Microbiol Ecol 94(2): fix177

  • Ma J, Liu H, Zhang C, Ding K, Chen R, Liu S (2020) Joint response of chemistry and functional microbial community to oxygenation of the reductive confined aquifer. Sci Total Environ 720:137587

    CAS  Google Scholar 

  • Matulich KL, Martiny JBH (2015) Microbial composition alters the response of litter decomposition to environmental change. Ecology 96(1):154–163

    Google Scholar 

  • Meng L, Zuo R, Wang JS, Li Q, Du C, Liu X, Chen MH (2021) Response of the redox species and indigenous microbial community to seasonal groundwater fluctuation from a typical riverbank filtration site in Northeast China. Ecol Eng 159:106099

    Google Scholar 

  • Meyerhof MS, Wilson JM, Dawson MN, Beman JM (2016) Microbial community diversity, structure and assembly across oxygen gradients in meromictic marine lakes. Palau Environ Microbiol 18(12):4907–4919

    CAS  Google Scholar 

  • Nealson KH (1997) Sediment bacteria: who’s there, what are they doing, and what’s new? Annu Rev Earth Planet Sci 25:403–434

    CAS  Google Scholar 

  • Ollivier J, Towe S, Bannert A, Hai B, Kastl EM, Meyer A, Su MX, Kleineidam K, Schloter M (2011) Nitrogen turnover in soil and global change. FEMS Microbiol Ecol 78(1):3–16

    CAS  Google Scholar 

  • Pronk GJ, Mellage A, Milojevic T, Smeaton CM, Engel K, Neufeld JD, Rezanezhad F, Van Cappellen P (2020) Carbon turnover and microbial activity in an artificial soil under imposed cyclic drainage and imbibition. Vadose Zone J 19(1):e20021

    Google Scholar 

  • Saha UK, Sonon L, Biswas BK (2018) A comparison of diffusion-conductimetric and distillation-titration methods in analyzing ammonium- and nitrate-nitrogen in the KCl-extracts of georgia soils. Commun Soil Sci Plan 49(1):63–75

    CAS  Google Scholar 

  • Shi J, Yang Y, Lu H, ** B, Li J, **ao C, Wang Y, Tang J (2021) Effect of water-level fluctuation on the removal of benzene from soil by SVE. Chemosphere 274:129796

    CAS  Google Scholar 

  • Shi R, Xu S, Qi Z, Zhu Q, Huang H, Weber F (2019) Influence of suspended mariculture on vertical distribution profiles of bacteria in sediment from Daya Bay, Southern China. Mar Pollut Bull 146:816–826

    CAS  Google Scholar 

  • Sinke AJC, Dury O, Zobrist J (1998) Effects of a fluctuating water table: column study on redox dynamics and fate of some organic pollutants. J Contam Hydrol 33(1–2):231–246

    CAS  Google Scholar 

  • Smith CJ, Nedwell DB, Dong LF, Osborn AM (2007) Diversity and abundance of nitrate reductase genes (narG and napA), nitrite reductase genes (nirS and nrfA), and their transcripts in estuarine sediments. Appl Environ Microbiol 73(11):3612–3622

    CAS  Google Scholar 

  • Spietz RL, Williams CM, Rocap G, Horner-Devine MC (2015) A dissolved oxygen threshold for shifts in bacterial community structure in a seasonally hypoxic estuary. PLoS ONE 10(8):e0135731

    Google Scholar 

  • Unno T, Kim J, Kim Y, Nguyen SG, Guevarra RB, Kim GP, Lee JH, Sadowsky MJ (2015) Influence of seawater intrusion on microbial communities in groundwater. Sci Total Environ 532:337–343

    CAS  Google Scholar 

  • Vet WW, Dinkla IJ, Abbas BA, Rietveld LC and Loosdrecht MC (2012) Gallionella spp. in trickling filtration of subsurface aerated and natural groundwater. Biotechnol Bioeng 109(4): 904–912

  • Walters WA, Caporaso JG, Lauber CL, Berg-Lyons D, Fierer N, Knight R (2011) PrimerProspector: de novo design and taxonomic analysis of barcoded polymerase chain reaction primers. Bioinformatics 27(8):1159–1161

    CAS  Google Scholar 

  • Wang G, Huang W, Mayes MA, Liu X, Zhang D, Zhang Q, Han T, Zhou G (2019a) Soil moisture drives microbial controls on carbon decomposition in two subtropical forests. Soil Biol Biochem 130:185–194

    CAS  Google Scholar 

  • Wang J, Wang D, Wang B (2019b) Soil bacterial diversity and its determinants in the riparian zone of the Lijiang River, China. Curr Sci India 117(8):1324–1332

  • Wilopo W and Putra DPE (2021) Groundwater recharge estimation using groundwater level fluctuation patterns in unconfined aquifer of Yogyakarta City, Indonesia. Kuwait J Sci 48(2)

  • Wu B, Liu F, Fang W, Yang T, Chen GH, He Z, Wang S (2021) Microbial sulfur metabolism and environmental implications. Sci Total Environ 778:146085

    CAS  Google Scholar 

  • **a X, Cheng L, Zhu Y, Liu Y, Wang K, Ding A, Cai Z, Shi H, Zuo L (2020) Response of soil bacterial community and geochemical parameters to cyclic groundwater-level oscillations in laboratory columns. Vadose Zone J 19:e20011

    Google Scholar 

  • **ang Y, Wang Y, Zhang C, Shen H, Wang D (2018) Water level fluctuations influence microbial communities and mercury methylation in soils in the Three Gorges Reservoir, China. J Environ Sci (china) 68:206–217

    CAS  Google Scholar 

  • Yan L, Hermans SM, Totsche KU, Lehmann R, Herrmann M, Kusel K (2021) Groundwater bacterial communities evolve over time in response to recharge. Water Res 201:117290

    CAS  Google Scholar 

  • Ye F, Ma MH, Op den Camp HJM, Chatzinotas A, Li L, Lv MQ, Wu SJ, Wang Y (2018) Different recovery processes of soil ammonia oxidizers from flooding disturbance. Microb Ecol 76(4):1041–1052

    CAS  Google Scholar 

  • Zhang H, Sun L, Li Y, Zhang W, Niu L, Wang L (2021) The bacterial community structure and N-cycling gene abundance in response to dam construction in a riparian zone. Environ Res 194:110717

    CAS  Google Scholar 

  • Zhang YT, Tong M, Yuan SH, Qian A, Liu H (2020) Interplay between iron species transformation and hydroxyl radicals production in soils and sediments during anoxic-oxic cycles. Geoderma 370:114351

    CAS  Google Scholar 

  • Zheng T, Deng Y, Wang Y, Jiang H, O’Loughlin EJ, Flynn TM, Gan Y, Ma T (2019) Seasonal microbial variation accounts for arsenic dynamics in shallow alluvial aquifer systems. J Hazard Mater 367:109–119

    CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Grant No. 41830862, 41672353, 41521001), Hubei Province for Innovative Research Groups (grant no. 2018CFA028), and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (CUGCJ1803, CUGQY1928).

Author information

Authors and Affiliations

Authors

Contributions

Junhao Shen: Conceptualization, methodology, validation, formal analysis, software, writing—original draft. Hui Liu: Supervision, project administration, funding acquisition, conceptualization, writing—review and editing. Huazhong Zhou: Writing—review and editing. Rong Chen: writing—review and editing.

Corresponding author

Correspondence to Hui Liu.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Communicated by Robert Duran.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 43 KB)

Supplementary file2 (DOCX 153 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Liu, H., Zhou, H. et al. Specific characteristics of the microbial community in the groundwater fluctuation zone. Environ Sci Pollut Res 29, 76066–76077 (2022). https://doi.org/10.1007/s11356-022-21166-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-21166-1

Keywords

Navigation