Log in

Boosting photocatalytic efficiency of MoS2/CdS by modulating morphology

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

CdS-based composites as the highly efficient photocatalyst have been extensively investigated in recent years due to the suitable band gap and high photocatalytic efficiency. In this study, the effect of various factors (pH, U(VI) concentration, contents, and types of photocatalyst) on photocatalytic reduction of U(VI) by MoS2/CdS composite was investigated. The optimized experimental conditions (e.g., pH 7.0, 20 mg/g U(VI), and 1.0 g/L photocatalyst) was obtained by batch techniques. Approximately 97.5% of U(VI) was photo-catalytically reduced into U(IV) by 2.5 wt% MoS2/CdS composite within 15 min. After 5 cycles, 2.5 wt% MoS2/CdS composite still exhibited the high removal efficiency of U(VI) under 50-min irradiation, indicating the good stability. The photo-reduction mechanism of U(VI) on MoS2/CdS composite was attributed to the O2 radicals by quenching experiments, ESR, and XPS analysis. The findings indicate that CdS-based catalyst has a great potential for the photocatalytic reduction of uranyl in actual environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alomar M, Liu Y, Chen W, Fida H (2019) Controlling the growth of ultrathin MoS2 nanosheets/CdS nanoparticles by two-step solvothermal synthesis for enhancing photocatalytic activities under visible light. Appl. Surf. Sci. 480:1078–1088

    Article  CAS  Google Scholar 

  • Andrews MB, Cahill CL (2013) Uranyl bearing hybrid materials: synthesis, speciation, and solid-state structures. Chem. Rev. 113:1121–1136

    Article  CAS  Google Scholar 

  • Arunachalam VS, Fleischer EL (2008) The global energy landscape and materials innovation. Mrs Bull. 33:264–288

    Article  CAS  Google Scholar 

  • B, Gu L, Liang MJ, Dickey X, Yin S (1998) Reductive precipitation of uranium(VI) by zero-valent iron. Environ. Sci. Technol. 32:3366–3373

    Article  Google Scholar 

  • Basu P, Chakraborty J, Ganguli N, Mukherjee K, Acharya K, Satpati B, Khamrui S, Mandal S, Banerjee D, Goswami D (2019) Defect-engineered MoS2 nanostructures for reactive oxygen species generation in the dark: antipollutant and antifungal performances. ACS Appl. Mater. Interfaces 11:48179–48191

    Article  CAS  Google Scholar 

  • Chai B, Xu M, Yan J, Ren Z (2018) Remarkably enhanced photocatalytic hydrogen evolution over MoS2 nanosheets loaded on uniform CdS nanospheres. Appl. Surf. Sci. 430:523–530

    Article  CAS  Google Scholar 

  • Chang K, Li M, Wang T, Ouyang S, Li P, Liu L, Ye J (2015) Drastic layer-number-dependent activity enhancement in photocatalytic H2 evolution over nMoS2/CdS (n≥1) under visible light. Adv. Energy Mater. 5:1–8

    Article  CAS  Google Scholar 

  • Chen G, Li D, Li F, Fan Y, Zhao H, Luo Y, Yu R, Meng Q (2012) Ball-milling combined calcination synthesis of MoS2/CdS photocatalysts for high photocatalytic H2 evolution activity under visible light irradiation. Appl. Catal. A-Gen. 443:138–144

    Article  Google Scholar 

  • Chen J, Wu X-J, Yin L, Li B, Hong X, Fan Z, Chen B, Xue C, Zhang H (2015) One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 54:1210–1214

    Article  CAS  Google Scholar 

  • Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303

    Article  CAS  Google Scholar 

  • Dai Z, Zhen Y, Sun Y, Li L, Ding D (2021) ZnFe2O4/g-C3N4 S-scheme photocatalyst with enhanced adsorption and photocatalytic activity for uranium(VI) removal. Chem. Eng. J. 415:129–135

    Article  Google Scholar 

  • Dolatyari L, Yaftian MR, Rostamnia S (2016) Removal of uranium(VI) ions from aqueous solutions using Schiff base functionalized SBA-15 mesoporous silica materials. J. Environ. Manage. 169:8–17

    Article  CAS  Google Scholar 

  • Gorshkov N, Izosimov I, Kolichev S, Smirnov V, Firsin N (2006) Isotope effect in the photoreduction of UO2F2 enriched with O-18 in isopropanol solution. J. Nucl. Sci. Technol. 43:407–410

    Article  CAS  Google Scholar 

  • Graves C, Ebbesen SD, Mogensen M, Lackner KS (2011) Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy. Renew. Sust. Energ. Rev. 15:1–23

    Article  CAS  Google Scholar 

  • Habibi MH, Rahmati MH (2014) Fabrication and characterization of ZnO@CdS core–shell nanostructure using acetate precursors: XRD, FESEM, DRS, FTIR studies and effects of cadmium ion concentration on band gap. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 133:13–18

    Article  CAS  Google Scholar 

  • Haseen U, Ahmad H (2020) Preconcentration and determination of trace Hg(II) using a cellulose nanofiber mat functionalized with MoS2 nanosheets. Ind. Eng. Chem. Res. 59:3198–3204

    Article  CAS  Google Scholar 

  • Jacobson MZ (2009) Review of solutions to global warming, air pollution, and energy security. Energy Environ. Sci. 2:148–173

    Article  CAS  Google Scholar 

  • Jacobson MZ, Delucchi MA (2011) Providing all global energy with wind, water, and solar power, part I: technologies, energy resources, quantities and areas of infrastructure, and materials. Energ. Policy 39:1154–1169

    Article  CAS  Google Scholar 

  • Ji J, Guo L, Li Q, Wang F, Li Z, Liu J, Jia Y (2015) A bifunctional catalyst for hydrogen evolution reaction: the interactive influences between CdS and MoS2 on photoelectrochemical activity. Int. J. Hydrogen Energy 40:3813–3821

    Article  CAS  Google Scholar 

  • Jiang W, Liu Y, Zong R, Li Z, Yao W, Zhu Y (2015) Photocatalytic hydrogen generation on bifunctional ternary heterostructured In2S3/MoS2/CdS composites with high activity and stability under visible light irradiation. J. Mater. Chem. A 3:18406–18412

    Article  CAS  Google Scholar 

  • Khawula TNY, Raju K, Franklyn PJ, Sigalas I, Ozoemena KI (2016) Symmetric pseudocapacitors based on molybdenum disulfide (MoS2)-modified carbon nanospheres: correlating physicochemistry and synergistic interaction on energy storage. J. Mater. Chem. A 4:6411–6425

    Article  CAS  Google Scholar 

  • Li LL, Yin XL, Sun YQ (2019) Facile synthesized low-cost MoS2/CdS nanodots-on-nanorods heterostructures for highly efficient pollution degradation under visible-light irradiation. Sep. Purif. Technol. 212:135–141

    Article  CAS  Google Scholar 

  • Liu Y, Yu Y-X, Zhang W-D (2013) MoS2/CdS heterojunction with high photoelectrochemical activity for H2 evolution under visible light: the role of MoS2. J. Phys. Chem. C 117:12949–12957

    Article  CAS  Google Scholar 

  • Misra SK, Mahatele AK, Tripathi SC, Dakshinamoorthy A (2009) Studies on the simultaneous removal of dissolved DBP and TBP as well as uranyl ions from aqueous solutions by using micellar-enhanced ultrafiltration technique. Hydrometallurgy 96:47–51

    Article  CAS  Google Scholar 

  • Qin N, **ong J, Liang R, Liu Y, Zhang S, Li Y, Li Z, Wu L (2017) Highly efficient photocatalytic H2 evolution over MoS2/CdS-TiO2 nanofibers prepared by an electrospinning mediated photodeposition method. Appl. Catal. B-Environ. 202:374–380

    Article  CAS  Google Scholar 

  • Sabaraya IV, Shin H, Li X, Hoq R, Incorvia JAC, Kirisits MJ, Saleh NB (2021) Role of electrostatics in the heterogeneous interaction of two-dimensional engineered MoS2 nanosheets and natural clay colloids: influence of pH and natural organic matter. Environ. Sci. Technol. 55:919–929

    Article  CAS  Google Scholar 

  • Sing K, Everett DH, Haul R, Moscou L, Siemieniewska T (1985): Reporting physisorption data for gas/solid system, 57. Handbook of heterogeneous catalysis

    Google Scholar 

  • Wang H, Guo H, Zhang N, Chen Z, Hu B, Wang X (2019) Enhanced photoreduction of U(VI) on C3N4 by Cr(VI) and bisphenol A: ESR, XPS, and EXAFS investigation. Environ. Sci. Technol. 53:6454–6461

    Article  CAS  Google Scholar 

  • Wu A, Tian C, Jiao Y, Yan Q, Yang G, Fu H (2017) Sequential two-step hydrothermal growth of MoS2/CdS core-shell heterojunctions for efficient visible light-driven photocatalytic H2 evolution. Appl. Catal. B-Environ. 203:955–963

    Article  CAS  Google Scholar 

  • **e J, Zhang J, Li S, Grote F, Zhang X, Zhang H, Wang R, Lei Y, Pan B, **e Y (2013) Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 135:17881–17888

    Article  CAS  Google Scholar 

  • Xu J, Cao X (2015) Characterization and mechanism of MoS2/CdS composite photocatalyst used for hydrogen production from water splitting under visible light. Chem. Eng. J. 260:642–648

    Article  CAS  Google Scholar 

  • Yan HJ, Yang JH, Ma GJ, Wu GP, Zong X, Lei ZB, Shi JY, Li C (2009) Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. J. Catal. 266:165–168

    Article  CAS  Google Scholar 

  • Yin X-L, Li L-L, Jiang W-J, Zhang Y, Zhang X, Wan L-J, Hu J-S (2016) MoS2/CdS nanosheets-on-nanorod heterostructure for highly efficient photocatalytic H2 generation under visible light irradiation. ACS Appl. Mater. Inter. 8:15258–15266

    Article  CAS  Google Scholar 

  • Yuan Y-J, Li Z, Wu S, Chen D, Yang L-X, Cao D, Tu W-G, Yu Z-T, Zou Z-G (2018) Role of two-dimensional nanointerfaces in enhancing the photocatalytic performance of 2D-2D MoS2/CdS photocatalysts for H2 production. Chem. Eng. J. 350:335–343

    Article  CAS  Google Scholar 

  • Zhang J, Zhu Z, Feng X (2014) Construction of two-dimensional MoS2/CdS p-n nanohybrids for highly efficient photocatalytic hydrogen evolution. Chem. Eur. J. 20:10632–10635

    Article  CAS  Google Scholar 

  • Zhang Y, Zhu M, Zhang S, Cai Y, Lv Z, Fang M, Tan X, Wang X (2020) Highly efficient removal of U(VI) by the photoreduction of SnO2/CdCO3/CdS nanocomposite under visible light irradiation. Appl. Catal. B-Environ. 279:119–126

    Article  Google Scholar 

  • Zong X, Yan H, Wu G, Ma G, Wen F, Wang L, Li C (2008) Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 130:7176–7181

    Article  CAS  Google Scholar 

Download references

Data availability

All data generated or analyzed during this study are included in this published article.

Funding

The project was financially supported by Fundamental Research Funds of the Central Universities (No. 2021MS036).

Author information

Authors and Affiliations

Authors

Contributions

**gting **ao: conceptualization, methodology, investigation, and writing and revising original draft. **nshui Huang: methodology and editing. Peng Mei: methodology, analysis, and editing. Huihui Wang: methodology, analysis, and editing. Yubing Sun: conceptualization, writing–review, revising, editing, and supervision.

Corresponding author

Correspondence to Yubing Sun.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Georg Steinhauser

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 581 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., **ao, J., Huang, X. et al. Boosting photocatalytic efficiency of MoS2/CdS by modulating morphology. Environ Sci Pollut Res 29, 73282–73291 (2022). https://doi.org/10.1007/s11356-022-20550-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-20550-1

Keywords

Navigation