Log in

Nanoparticles for active combination radio mitigating agents of zinc coumarate and zinc caffeinate in a rat model

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Zinc coumarate and zinc caffeinate nanoparticles (ZnCoNPs, ZnCaNPs) affect different biological processes. This study aimed to evaluate the mitigating action of ZnCoNPs in combination with ZnCaNPs against liver damage induced by gamma rays (γ-rays). Rats were exposed to 7 Gy of γ-rays and then injected intraperitoneally (i.p) with ZnCoNPs [2U/rat/day (5 mg/kg)] and ZnCaNPs [2U/rat/day (15 mg/kg)] for 7 consecutive days. The results showed that irradiated rats treated with ZnCoNPs (5 mg/kg/body weight) in combination with ZnCaNPs (15 mg/kg/body weight) for 7 days had a significant increases in body weight, antioxidant levels, T helper cell 4 (cluster of differentiation 4 (CD4)), and T cytotoxic cell 8 (cluster of differentiation 8 (CD8)), associated with a marked decrease in lipid peroxidation (LP), nitric oxide(NOx), total free radicals concentrate (TFRC), and DNA fragmentation. There were positive alterations in the morphological state, hematological parameters and the cell cycle phases. Additionally, the histopathological study demonstrated an improvement in the liver tissue of irradiated rats after treatment. Thus, ZnCoNPs and ZnCaNPs could be used as natural mitigating agents to reduce the hazards of ionizing radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data are available on request to the authors.

References

  • Adams F, Bellairs G, Bird AR, Oguntibeju OO (2015) Biochemical storage lesions occurring in nonirradiated and irradiated red blood cells: a brief review. BioMed Res Int 2015:8

    Article  CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 5:121–126

    Article  Google Scholar 

  • Agunloye OM, Oboh G, Ademiluyi AO, Ademosun AO, Akindahunsi AA, Oyagbemi AA et al (2019) Cardio-protective and antioxidant properties of caffeic acid and chlorogenic acid: mechanistic role of angiotensin converting enzyme, cholinesterase and arginase activities in cyclosporine induced hypertensive rats. Biomed Pharmacother 109:450–458

    Article  CAS  Google Scholar 

  • Ali EMM, Zeyadi MA (2020) Impact of caffeic acid phenyl ester on nitric oxide synthase and arginase in rats intoxicated with nitrites. J King Saud Univ Sci 32:2454–2461

    Article  Google Scholar 

  • An SM, Koh JS, Boo YC (2010) p-coumaric acid not only inhibits human tyrosinase activity in vitro but also melanogenesis in cells exposed to UVB. Phytother Res 24:1175–1180

    Article  CAS  Google Scholar 

  • Bala S, Chugh NA, Bansal SC, Koul A (2019) Aloe vera modulates X-ray induced hematological and splenic tissue damage in mice. Hum ExpToxicol 38:1195–1211

    Article  CAS  Google Scholar 

  • Bancroft JD, Stevens AE (1996) Theory and practice of histological techniques, 4th edn. Churchill Livingstone, Edinburgh, p 766

    Google Scholar 

  • Benbettaieb N, Nyagaya J, Seuvre AM, Debeaufort F (2018) Antioxidant activity and release kinetics of caffeic and p-coumaric acids from hydrocolloid-based active films for healthy packaged food. J Agric Food Chem 66:6906–6916

    Article  CAS  Google Scholar 

  • Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    CAS  Google Scholar 

  • Bhatti IA, Akram K, Kwon JH (2012) An investigation into gamma-ray treatment of shellfish using electron paramagnetic resonance spectroscopy. J Sci Food Agric 92:759–763

    Article  CAS  Google Scholar 

  • Charkhi A, Kazemian H, Kazemeini M (2010) Optimized experimental design for natural clinoptilolite zeolite ball next term milling to produce previous termnanonext term powders. Powder Technol 203:389–396

    Article  CAS  Google Scholar 

  • Chen S, Lin R, Lu H, Wang Q, Yang J, Liu J, Yan C (2020) Effects of phenolic acids on free radical scavenging and heavy metal bioavailability in Kandelia obovata under cadmium and zinc stress. Chemosphere 249:126341

    Article  CAS  Google Scholar 

  • Choi HG, Tran PT, Lee JH, Min BS, Kim JA (2019) Correction to: Anti-inflammatory activity of caffeic acid derivatives isolated from the roots of Salvia miltiorrhiza Bunge. Arch Pharm Res 42:378

    Article  CAS  Google Scholar 

  • Citrin D, Cotrim AP, Hyodo F, Baum BJ, Krishna MC, Mitchell JB (2010) Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist 15:360–371

    Article  CAS  Google Scholar 

  • de Oliveira GA, Cheng RYS, Ridnour LA, Basudhar D, Somasundaram V, McVicar DW, Monteiro HP, Wink DA (2017) Inducible nitric oxide synthase in the carcinogenesis of gastrointestinal cancers. Antioxid Redox Signal 26:1059–1077

    Article  CAS  Google Scholar 

  • Durante M, Formenti SC (2018) Radiation-induced chromosomal aberrations and immunotherapy: micronuclei, cytosolic DNA, and interferon-production pathway. Front Oncol 8:192

    Article  Google Scholar 

  • EkinciAkdemir FN, Albayrak M, Çalik M, Bayir Y, Gülçin I (2017) The protective effects of p-coumaric acid on acute liver and kidney damages induced by cisplatin. Biomedicines 5:18

    Article  CAS  Google Scholar 

  • El Tawiil GA, Noaman EA, Askar MA, El Fatih NM, Mohamed HE (2020) Anticancer and apoptogenic effect of graviola and low-dose radiation in tumor xenograft in mice. Integr Cancer Ther 19:1534735419900930

    Article  CAS  Google Scholar 

  • Elgazzar AH, Kazem N (2006) Biological effects of ionizing radiation. In: Elgazzar A.H. (eds) The Pathophysiologic Basis of Nuclear Medicine. Springer, Berlin, Heidelberg

  • Ferreira TS, Moreira CZ, Cária NZ, Victoriano G, Silva WF Jr, Magalhães JC (2014) Phytotherapy: an introduction to its history, use and application. Rev Bras de Plantas Medicinais 16:290–298

    Article  Google Scholar 

  • Facorro G, Sarrasague MM, Torti H, Hager A, Avalos JS, Foncuberta M, Kusminsky G (2004) Oxidative study of patients with total body irradiation: effects of amifostine treatment. Bone Marrow Transplant 33:793–798

    Article  CAS  Google Scholar 

  • Gao H, Dong Z, Gong X, Dong J, Zhang Y, Wei W, Wang R, ** S (2018) Effects of various radiation doses on induced T-helper cell differentiation and related cytokine secretion. J Radiat Res 59:395–403

    Article  CAS  Google Scholar 

  • Green DE, Rubin CT (2014) Consequences of irradiation on bone and marrow phenotypes, and its relation to disruption of hematopoietic precursors. Bone 63:87–94

    Article  CAS  Google Scholar 

  • Guida MS, Abd El-Aal A, Kafafy Y, Salama SF, Badr BM, Badr G (2016) Thymoquinone rescues T lymphocytes from gamma irradiation-induced apoptosis and exhaustion by modulating pro-inflammatory cytokine levels and PD-1, Bax, and Bcl-2 Signaling. Cell PhysiolBiochem 38:786–800

    CAS  Google Scholar 

  • Guryev DV (2005) Histologic assessment of regenerating rat liver under low-dose rate radiation exposure. Int Congr Ser 1276:181–182

    Article  Google Scholar 

  • Hamada N, Kawano KI, Yusoff FM, Furukawa K, Nakashima A, Maeda M, Yasuda H, Maruhashi T, Higashi Y (2020) Ionizing irradiation induces vascular damage in the aorta of wild-type mice. Cancers (basel) 12:3030

    Article  CAS  Google Scholar 

  • Heckly RJ (1975) "Biological applications of electron spin resonance. In Free Radicals in Dry Tissues." Edited by: Swartz HM, Bolton. New York: Wiley Inter ScienceJR, Borg DC: 5

  • Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074

    Article  CAS  Google Scholar 

  • Kanagaraj VV, Panneerselvam L, Govindarajan V, Ameeramja J, Perumal E (2015) Caffeic acid, a phyto polyphenol mitigates fluoride induced hepatotoxicity in rats: a possible mechanism. BioFactors 41:90–100

    Article  CAS  Google Scholar 

  • Khan F, Garg VK, Singh AK, Kumar T (2018) Role of free radicals and certain antioxidants the in the management of huntington’s disease: a review. J Anal Pharm Res Res 7:386–392

    Google Scholar 

  • Kheiry M, Dianat M, Badavi M, Mard SA, Bayati V (2019) p-coumaric acid attenuates lipopolysaccharide-induced lung inflammation in rats by scavenging ROS production: an in vivo and in vitro study. Inflammation 42:1939–1950

    Article  CAS  Google Scholar 

  • Kianmehr Z, Khorsandi K, Mohammadi M, Hosseinzadeh R (2020) Low-level laser irradiation potentiates anticancer activity of p-coumaric acid against human malignant melanoma cells. Melanoma Res 30:136–146

    Article  CAS  Google Scholar 

  • Kilani-Jaziri S, Mokdad-Bzeouich I, Krifa M, Nasr N, Ghedira K, Chekir-Ghedira L (2017) Immunomodulatory and cellular anti-oxidant activities of caffeic, ferulic, and p-coumaric phenolic acids: a structure-activity relationship study. Drug ChemToxicol 40:416–424

    CAS  Google Scholar 

  • Krokosz A, Lichota A, Nowak K, Grebowski J (2016) Carbon nanoparticles as possible radioprotectors in biological systems. Radiat Phys Chem 128:143–150

    Article  CAS  Google Scholar 

  • Kurutas EB (2016) The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J 15:71

    Article  CAS  Google Scholar 

  • Lavelle C, Foray N (2014) Chromatin structure and radiation-induced DNA damage: From structural biology to radiobiology. Int J Biochem Cell Biol 49:84–97

    Article  CAS  Google Scholar 

  • Lee HY, Kim SW, Lee GH, Choi MK, Jung HW, Kim YJ, Kwon HJ, Chae HJ (2016) Turmeric extract and its active compound, curcumin, protect against chronic CCl4-induced liver damage by enhancing antioxidation. BMC Complement Altern Med 16:316

    Article  CAS  Google Scholar 

  • Leite LAR, Kinoshita A, Baffa O, Azevedo RK, Abdallah VD (2018) Electron spin resonance (ESR) in detection of aquatic pollution through host-parasite relationship. Rev Ambient Água [Internet]. 2018 [cited 2021 Mar 17] ; 13( 6 ): e2085

  • Li HH, Wang YW, Chen R, Zhou B, Ashwell JD, Fornace AJ Jr (2015) Ionizing Radiation Impairs T cell activation by affecting metabolic reprogramming. Int J BiolSci 11:726–36

    Article  CAS  Google Scholar 

  • Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P (2018) Oxidative stress, aging, and diseases. ClinInterv Aging 13:757–772

    CAS  Google Scholar 

  • Minami M, Yoshikawa H (1979) A simplified assay method of superoxide dismutase activity for clinical use. ClinChimActa 92:337–342

    CAS  Google Scholar 

  • Miranda KM, Espey MG, Wink DA (2001) A rapid simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:67–71

    Article  CAS  Google Scholar 

  • Nuszkiewicz J, Woźniak A, Szewczyk-Golec K (2020) Ionizing radiation as a source of oxidative stress-the protective role of melatonin and vitamin D. Int J MolSci 21:5804

    CAS  Google Scholar 

  • Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J LaboratClinMed 70:158–169

    CAS  Google Scholar 

  • Pang C, Zheng Z, Shi L, Sheng Y, Wei H, Wang Z, Ji L (2016) Caffeic acid prevents acetaminophen-induced liver injury by activating the Keap1-Nrf2 antioxidative defense system. Free Radic Biol Med 91:236–246

    Article  CAS  Google Scholar 

  • Pari L, Prasath A (2008) Efficacy of caffeic acid in preventing nickel induced oxidative damage in liver of rats. ChemBiolInteract 173:77–83

    CAS  Google Scholar 

  • Pragasam SJ, Venkatesan V, Rasool M (2013) Immunomodulatory and anti-inflammatory effect of p-coumaric acid, a common dietary polyphenol on experimental inflammation in rats. Inflammation 36:169–176

    Article  CAS  Google Scholar 

  • Prasad NR, Menon VP, Vasudev V, Pugalendi KV (2005) Radioprotective effect of sesamol on gamma-radiation induced DNA damage, lipid peroxidation and antioxidants levels in cultured human lymphocytes. Toxicology 209(3):225–235

    Article  CAS  Google Scholar 

  • Reza HM, Rahman MM, Ullah MO (2016) Hydroxycinnamic acid derivatives: a potential class of natural compounds for the management of lipid metabolism and obesity. NutrMetab (Lond) 13:27

    Google Scholar 

  • Rosa LS, Jordão NA, da Costa Pereira Soares N, deMesquita JF, Monteiro M, Teodoro AJ (2018) Pharmacokinetic, Antiproliferative and Apoptotic Effects of Phenolic Acids in Human Colon Adenocarcinoma Cells Using In Vitro and In Silico Approaches. Molecules 23:2569

  • Sabitha R, Nishi K, Gunasekaran VP, Annamalai G, Agilan B, Ganeshan M (2019) p-Coumaric acid ameliorates ethanol–induced kidney injury by inhibiting inflammatory cytokine production and NF–κB signaling in rats. Asian Pac J Trop Biomed 9:188–195

    Article  CAS  Google Scholar 

  • Sachse C, Henkel E (1996) Evaluation of the CELL-DYN 1700 haematology analyser: automated cell counting and three-part leucocyte differentiation. Clin Lab Haematol 18(3):171–180

    Article  CAS  Google Scholar 

  • Saha S, Buttari B, Panieri E, Profumo E, Saso L (2020) An Overview of Nrf2 Signaling Pathway and Its Role in Inflammation. Molecules 25:5474

    Article  CAS  Google Scholar 

  • Silva JDPD, Ballejo G (2019) Pharmacological characterization of the calcium influx pathways involved in nitric oxide production by endothelial cells. Einstein (Sao Paulo) 17:eAO4600

    Article  Google Scholar 

  • Smith TA, Kirkpatrick DR, Smith S, Smith TK, Pearson T, Kailasam A, Herrmann KZ, Schubert J, Agrawal DK (2017) Radioprotective agents to prevent cellular damage due to ionizing radiation. J Transl Med 15:232

    Article  CAS  Google Scholar 

  • Srinivasan M, Sudheer AR, Pillai KR, Kumar PR, Sudhakaran PR, Menon VP (2007) Modulatory effects of curcumin on γ-radiation-induced cellular damage in primary culture of isolated rat hepatocytes. Environ ToxicolPharmacol 24:98–105

    CAS  Google Scholar 

  • Takahashi N, Misumi M, Niwa Y, Murakami H, Ohishi W, Inaba T, Nagamachi A, Tanaka S, Braga Tanaka I, Suzuki G (2020) Effects of radiation on blood pressure and body weight in the spontaneously hypertensive rat model. Are radiation effects on blood pressure affected by genetic background? Radiat Res 193:552–559

    Article  CAS  Google Scholar 

  • Taqi AH, Faraj K, Zaynal S, Said J, Hameed A (2019) Effects of high doses of x-ray on hematological parameters and morphology of red blood cells in human blood. Iran J Med Phys 16:112–119

    Google Scholar 

  • Tsai TH, Yu CH, Chang YP, Lin YT, Huang CJ, Kuo YH, Tsai PJ (2017) Protective effect of caffeic acid derivatives on tert-butyl hydroperoxide-induced oxidative hepato-toxicity and mitochondrial dysfunction in HepG2 cells. Molecules 22:702

    Article  CAS  Google Scholar 

  • Vucić V, Isenović ER, Adzić M, Ruzdijić S, Radojcić MB (2006) Effects of gamma-radiation on cell growth, cycle arrest, death, and superoxide dismutase expression by DU 145 human prostate cancer cells. Braz J Med Biol Res 39:227–236

    Article  Google Scholar 

  • Weissman BA, Jones CL, Liu Q, Gross SS (2002) Activation and inactivation of neuronal nitric oxide synthase: characterization of Ca2+-dependent calmodulin binding. Eur J Pharmacol 435:9–18

    Article  CAS  Google Scholar 

  • Wilson A, Menon V, Khan Z, Alam A, Litovchick L, Yakovlev V (2019) Nitric oxide-donor/PARP-inhibitor combination: A new approach for sensitization to ionizing radiation. Redox Biol 24:101169

    Article  CAS  Google Scholar 

  • Yahyapour R, Shabeeb D, Cheki M, Musa AE, Farhood B, Rezaeyan A, Amini P, Fallah H, Najafi M (2018) Radiation protection and mitigation by natural antioxidants and flavonoids: implications to radiotherapy and radiation disasters. CurrMolPharmacol 11:285–304

    CAS  Google Scholar 

  • Yıldızhan K., Demirtaş, Ö C, Uyar, A, Huyut Z, Çakir T, Keleş ÖF, Yener Z (2020) Protective effects of Urticadioica L. Seed extract on liver tissue injury and antioxidant capacity in irradiated rats. Brazilian Journal of Pharmaceutical Sciences 56:e18354. Epub March 16, 2020

  • Yoshioka T, Kawada K, Shimada T, Mori M (1979) lipid peroxidation in maternal and cord blood and protective mechanism against activated oxygen toxicity in the blood. Am J ObstetGynecol 135:372–376

    Article  CAS  Google Scholar 

  • Zavodnik LB, Kravchuk RI, Artsukevich AN, Chumachenko SS, Sheĭbak VM, Ovchinnikov VA, Buko VU (2003) Dinamikastrukturnykhizmeneniĭ v pechenikrysposleodnokratnogovozdeĭstviia gamma-izlucheniia [Dynamics of structural changes in rat liver after single dose of gamma-irradiation]. RadiatsBiolRadioecol 43:618–624

    CAS  Google Scholar 

  • Zeb A (2020) Concept, mechanism, and applications of phenolic antioxidants in foods. J Food Biochem 44:e1339

    Article  CAS  Google Scholar 

Download references

Funding

No financial relationships relevant to this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors planned the experiment. Askar MA, Mansour NA, Ali EN, Abdel-Magied N, and Ragab EA prepared the samples of tissues and nanoparticles. Guida MS prepared the samples of electrophoresis. Abu Nour SM prepared the samples for histopathological study. Elmasry SA prepared the samples for Flow Cytometry study. All authors analyzed the data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nadia Abdel-Magied.

Ethics declarations

Ethical approval

The animals’ treating procedure has been accepted by the animal ethics committee of the NCRRT subsequent the 3Rs principles for animal experimentation and is prepared by Central Scientific Publishing Committee, Egyptian Atomic Energy Authority. Rf. (190)—7/07/2020.

Consent to participate

All authors contributed voluntarily to this study.

Consent to publish

All authors have consent for the publication of the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Mohamed M. Abdel-Daim

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askar, M.A., Guida, M.S., AbuNour, S.M. et al. Nanoparticles for active combination radio mitigating agents of zinc coumarate and zinc caffeinate in a rat model. Environ Sci Pollut Res 29, 30233–30248 (2022). https://doi.org/10.1007/s11356-021-18411-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-18411-4

Keywords

Navigation