Log in

Monthly rather than annual climate variation determines plant diversity change in four temperate grassland nature reserves

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Plant diversity is changing in the world; climate variation at annual scale is believed to drive these changes; however, the effects of climate variation at month scale are still unknown. Anxi, West Ordos, ** with plant diversity decreasing may be more effective and earlier based on monthly climate variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Ackerly DD, Loarie SR, Cornwell WK, Weiss SB, Kraft NJB (2010) The geography of climate change: implications for conservation biogeography. Divers Distrib 16(3):476–487

    Google Scholar 

  • Badgley C, Smiley TM, Terry R, Davis EB, Desantis LRG, Fox DL et al (2017) Biodiversity and topographic complexity: modern and geohistorical perspectives. Trends Ecol Evol 32(3):211–226

    Google Scholar 

  • Baldeck CA, Harms KE, Yavitt JB, John R, Turner BL, Valencia R et al (2013) Soil resources and topography shape local tree community structure in tropical forests. Proc Biol Sci 280(1753):2532–2538

    Google Scholar 

  • Beaumont LJ, Pitman AJ, Poulsen M, Hughes L (2007) Where will species go? Incorporating new advances in climate modelling into projections of species distributions. Glob Chang Biol 13(7):1368–1385

    Google Scholar 

  • Boulangeat I, Georges D, Dentant C, Bonet R, Van Es J, Abdulhak S et al (2014) Anticipating the spatio-temporal response of plant diversity and vegetation structure to climate and land use change in a protected area. Ecography 37(12):1230–1239

    Google Scholar 

  • Bütof A, Riedmatten LRV, Dormann CF, Scherer-Lorenzen M, Welk E, Bruelheide H (2012) The responses of grassland plants to experimentally simulated climate change depend on land use and region. Glob Chang Biol 18(1):127–137

    Google Scholar 

  • Carlson KM, Asner GP, Hughes RF, Ostertag R, Martin RE (2007) Hyperspectral remote sensing of canopy biodiversity in Hawaiian lowland rainforests. Ecosystems 10(4):536–549

    Google Scholar 

  • Carroll C, Roberts DR, Michalak JL, Lawler JJ, Nielsen SE, Stralberg D, Hamann A, Mcrae BH, Wang T (2017) Scale-dependent complementarity of climatic velocity and environmental diversity for identifying priority areas for conservation under climate change. Glob Chang Biol 23(11):4508–4520

    Google Scholar 

  • Clarke A, Gaston KJ (2006) Climate, energy and diversity. Proc Biol Sci 273(1599):2257–2266

    Google Scholar 

  • Du Y, Luo B, Han W et al (2020) Increasing plant diversity offsets the influence of coarse sand on ecosystem services in microcosms of constructed wetlands. Environ Sci Pollut Res 27:34398–34411

    CAS  Google Scholar 

  • Gao J, Liu Y (2018) Climate stability is more important than water-energy variables in sha** the elevational variation in species richness. Ecol Evol 8(14):6872–6879

    Google Scholar 

  • Gholizadeh H, Gamon JA, Zygielbaum AI, Wang R, Schweiger AK, Cavender-Bares J (2018) Remote sensing of biodiversity: soil correction and data dimension reduction methods improve assessment of α-diversity (species richness) in prairie ecosystems. Remote Sens Environ 206(1):240–253

    Google Scholar 

  • Gould W (2000) Remote sensing of vegetation, plant species richness, and regional biodiversity hotspots. Ecol Appl 10(6):1861–1870

    Google Scholar 

  • Grabherr G, Gottfried M, Paull H (1994) Climate effects on mountain plants. Nature 369(6480):448

    CAS  Google Scholar 

  • Hackman KO (2016) A rapid assessment of landscape biodiversity using diversity profiles of arthropod morphospecies. Landsc Ecol 32(1):209–223

    Google Scholar 

  • Harrison SP, Gornish ES, Copeland S (2015) Climate-driven diversity loss in a grassland community. Proc Natl Acad Sci 112(28):8672–8677

    CAS  Google Scholar 

  • Hautier Y, Isbell F, Borer ET, Seabloom EW, Harpole WS, Lind EM, MacDougall A, Stevens CJ, Adler PB, Alberti J, Bakker JD, Brudvig LA, Buckley YM, Cadotte M, Caldeira MC, Chaneton EJ, Chu C, Daleo P, Dickman CR, Dwyer JM, Eskelinen A, Fay PA, Firn J, Hagenah N, Hillebrand H, Iribarne O, Kirkman KP, Knops JMH, la Pierre KJ, McCulley R, Morgan JW, Pärtel M, Pascual J, Price JN, Prober SM, Risch AC, Sankaran M, Schuetz M, Standish RJ, Virtanen R, Wardle GM, Yahdjian L, Hector A (2017) Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nat Ecol Evol 2(1):50–56

    Google Scholar 

  • Hernández-Stefanoni JL, Gallardo-Cruz JA, Meave JA, Rocchini D, Bello-Pineda J, López-Martínez JO (2012) Modeling α- and β-diversity in a tropical forest from remotely sensed and spatial data. Int J Appl Earth Obs Geoinf 19(Complete):359–368

    Google Scholar 

  • Hoover DL, Knapp AK, Smith MD (2014) Resistance and resilience of a grassland ecosystem to climate extremes. Ecology 95(9):2646–2656

    Google Scholar 

  • Hunt ER, Everitt JH, Ritchie JC, Moran MS, Booth DT, Anderson GL et al (2003) Applications and research using remote sensing for rangeland management. Photogramm Eng Remote Sens 69(6):675–693

    Google Scholar 

  • Maclean SA, Rios Dominguez AF, De Valpine P, Beissinger SR (2018) A century of climate and land-use change cause species turnover without loss of beta diversity in California's Central Valley. Glob Chang Biol 24(11):5882–5894

    Google Scholar 

  • Marcilio-Silva V, Zwiener VP, Marques & Márcia C. M. (2017) Metacommunity structure, additive partitioning and environmental drivers of woody plants diversity in the Brazilian Atlantic Forest. Divers Distrib 23(10):1110–1119

    Google Scholar 

  • Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM, Bush MB, Harrison SP, Hurlbert AH, Knowlton N, Lessios HA, McCain CM, McCune AR, McDade LA, McPeek MA, Near TJ, Price TD, Ricklefs RE, Roy K, Sax DF, Schluter D, Sobel JM, Turelli M (2007) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol Lett 10(4):315–331

    Google Scholar 

  • Palmer MW, Earls PG, Hoagland BW, White PS, Wohlgemuth T (2002) Quantitative tools for perfecting species lists. Environmetrics 13(2):121–137

    Google Scholar 

  • Palmer G, Hill JK, Brereton TM, Brooks DR, Chapman JW, Fox R, Oliver TH, Thomas CD (2015) Individualistic sensitivities and exposure to climate change explain variation in species’ distribution and abundance changes. Sci Adv 1(9):e1400220

    Google Scholar 

  • Pasari JR, Levi T, Zavaleta ES, Tilman D (2013) Several scales of biodiversity affect ecosystem multifunctionality. Proc Natl Acad Sci 110(25):10219–10222

    CAS  Google Scholar 

  • Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Alonso JLB, Coldea G, Dick J, Erschbamer B, Calzado RF, Ghosn D, Holten JI, Kanka R, Kazakis G, Kollar J, Larsson P, Moiseev P, Moiseev D, Molau U, Mesa JM, Nagy L, Pelino G, Puscas M, Rossi G, Stanisci A, Syverhuset AO, Theurillat JP, Tomaselli M, Unterluggauer P, Villar L, Vittoz P, Grabherr G (2012) Recent plant diversity changes on Europe’s mountain summits. Science 336(6079):353–355

    CAS  Google Scholar 

  • Prieto I, Violle C, Barre P, Durand JL, Ghesquiere M, Litrico I (2015) Complementary effects of species and genetic diversity on productivity and stability of sown grasslands. Nat Plants 1(4):15033–15037

    CAS  Google Scholar 

  • Rahmanian S, Hejda M, Ejtehadi H, Farzam M, Pyšek P (2019) Effects of livestock grazing on soil, plant functional diversity, and ecological traits vary between regions with different climates in northeastern Iran. Ecol Evol 9(1):1–13

    Google Scholar 

  • Schweiger AK, Cavender-Bares J, Townsend PA, Hobbie SE, Madritch MD, Wang R, Tilman D, Gamon JA (2018) Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function. Nat Ecol Evol 2(6):976–982

    Google Scholar 

  • Socher SA, Prati D, Boch S, Müller J, Fischer M (2012) Direct and productivity-mediated indirect effects of fertilization, mowing and grazing on grassland species richness. J Ecol 100(6):1391–1399

    Google Scholar 

  • Teramura AH (2006) Effects of ultraviolet-b radiation on the growth and yield of crop plants. Physiol Plant 58(3):415–427

    Google Scholar 

  • Thomas M, Jonas D, Barbara S, Honor P, Karin H (2016) Airborne hyperspectral data predict fine-scale plant species diversity in grazed dry grasslands. Remote Sens 8(2):133–152

    Google Scholar 

  • Tilman D (1996) Biodiversity: population versus ecosystem stability. Ecology 77(2):350–363

    Google Scholar 

  • Ustin SL, Gamon JA (2010) Remote sensing of plant functional types. New Phytol 186(4):795–816

    Google Scholar 

  • Wang R, John G, Rebecca M, Philip T, Arthur Z, Keren B et al (2016a) Seasonal variation in the NDVI–species richness relationship in a prairie grassland experiment (cedar creek). Remote Sens 8(2):128–142

    Google Scholar 

  • Wang R, John G, Craig E, Haitao L, Enrica N, Gilberto P et al (2016c) Integrated analysis of productivity and biodiversity in a Southern Alberta Prairie. Remote Sens 8(3):214–233

    Google Scholar 

  • Wang J, Wu D, He D, Yang F et al (2018a) Spatial relationship between climatic diversity and biodiversity conservation value. Conserv Biol 32(6):1266–1277

    Google Scholar 

  • Wang R, Gamon JA, Cavender-Bares J, Townsend PA, Zygielbaum AI (2018b) The spatial sensitivity of the spectral diversity-biodiversity relationship: an experimental test in a prairie grassland. Ecol Appl 28(2):541–556

    Google Scholar 

  • Wang R, Gamon JA, Schweiger AK, Cavender-Bares J, Townsend PA, Zygielbaum AI, Kothari S (2018c) Influence of species richness, evenness, and composition on optical diversity: a simulation study. Remote Sens Environ 211(10):218–228

    Google Scholar 

  • White SR, Bork EW, Cahill JF (2014) Direct and indirect drivers of plant diversity responses to climate and clip** across northern temperate grassland. Ecology 95(11):3093–3103

    Google Scholar 

  • Wubs ERJ, Bezemer MT (2017) Plant community evenness responds to spatial plant-soil feedback heterogeneity primarily through the diversity of soil conditioning. Funct Ecol 32(2):509–521

    Google Scholar 

  • Zdeňka L, Lubomír T, Jan D et al (2018) Projecting potential future shifts in species composition of European urban plant communities. Divers Distrib 24(6):765–775

    Google Scholar 

  • Zellweger F, Roth T, Bugmann H, Bollmann K (2017) Beta diversity of plants, birds and butterflies is closely associated with climate and habitat structure. Glob Ecol Biogeogr 26(8):898–906

    Google Scholar 

  • Zhang MG, Zhou ZK, Chen WY, Cannon CH, Raes N, Slik JWF (2014) Major declines of woody plant species ranges under climate change in Yunnan, China. Divers Distrib 20(4):405–415

    CAS  Google Scholar 

  • Zhang Y, Michel L, He N, Wang J, Pan Q, Bai Y et al (2018) Climate variability decreases species richness and community stability in a temperate grassland. Oecologia 188(1):183–192

    Google Scholar 

  • Zwiener VP, Lira-Noriega A, Grady et al (2017) Climate change as a driver of biotic homogenization of woody plants in the Atlantic Forest. Glob Ecol Biogeogr 27(3):298–309

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editors and reviewers for their constructive comments.

Funding

This study is funded by the National Key Research and Development Program of China (2017YFC0505606) and the Top Discipline and First-class University Construction Project (ydzxxk201618) of Minzu University of China.

Author information

Authors and Affiliations

Authors

Contributions

YP devised the project. YP, LB, and JT developed the research questions and study design. YL, ZW, and LB processed and analyzed data. All authors contributed to the manuscript writing and editing.

Corresponding author

Correspondence to Yu Peng.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, ., Wang, Z., Lu, Y. et al. Monthly rather than annual climate variation determines plant diversity change in four temperate grassland nature reserves. Environ Sci Pollut Res 29, 10357–10365 (2022). https://doi.org/10.1007/s11356-021-16473-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-16473-y

Keywords

Navigation