Log in

Aminosilane-grafted spherical cellulose nanocrystal aerogel with high CO2 adsorption capacity

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, the cellulose nanocrystals (CNC) obtained by acid hydrolysis of microcrystalline cellulose (MCC) are customized by suspension to obtain a spherical CNC hydrogel. The N-(2-aminoethyl) (3-amino-propyl) methyldimethoxyansile (AEAPMDS) preparation was grafted to spherical CNC hydrogel using a water phase heat treatment. Finally, aerogel samples were obtained by tert-butanol replacement and freeze-drying. The test results confirmed that the aminosilane was grafted on CNC. Electron micrographs and N2 sorption isotherms showed that the pores of the aerogel were partially blocked due to the introduction of AEAPMDS, and the specific surface area was decreased. Due to the presence of chemisorption, the amount of CO2 adsorbed at a pressure of 3 bar by the modified aerogel (2.63 mmol/g) was greatly improved compared with the unmodified aerogel (0.26 mmol/g), and the adsorption results were fit well by the Langmuir model. Thus, our experiments provided the opportunity to develop a new CO2 absorbent material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdelmouleha M, Boufia S, Belgacemb MN, Duartec AP, Salaha AB, Gandinib A (2004) Modification of cellulosic fibres with functionalised silanes: development of surface properties. Int J Adhes Adhes 24:43–54

    Article  CAS  Google Scholar 

  • Bhanja P, Chatterjee S, Bhaumik A (2016) Triazine-based porous organic polymer with good CO2 gas adsorption properties and an efficient organocatalyst for the one-pot multicomponent condensation. Chemcatchem 8:3089–3098. https://doi.org/10.1002/cctc.201600840

    Article  CAS  Google Scholar 

  • Cervin NT, Aulin C, Larsson PT, Wågberg L (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19:401–410

    Article  CAS  Google Scholar 

  • Chen W, Yu H, Li Q, Liu Y, Li J (2011) Ultralight and highly flexible aerogels with long cellulose I nanofibers. Soft Matter 7:10360–10368

    Article  CAS  Google Scholar 

  • Darunte LA, Walton KS, Sholl DS, Jones CW (2016) CO2 capture via adsorption in amine-functionalized sorbents. Curr Opin Chem Eng 12:82–90. https://doi.org/10.1016/j.coche.2016.03.002

    Article  Google Scholar 

  • De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631. https://doi.org/10.1021/acs.chemmater.7b00531

    Article  CAS  Google Scholar 

  • Fu J, Wang S, He C, Lu Z, Huang J, Chen Z (2016) Facilitated fabrication of high strength silica aerogels using cellulose nanofibrils as scaffold. Carbohydr Polym 147:89–96

    Article  CAS  Google Scholar 

  • Gao Z, Ma M, Zhai X, Zhang M, Zang D, Wang C (2015) Improvement of chemical stability and durability of superhydrophobic wood surface via a film of TiO2 coated CaCO3 micro-/nano-composite particles. RSC Adv 5:63978–63984

    Article  CAS  Google Scholar 

  • García-González CA, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels—promising biodegradable carriers for drug delivery systems. Carbohydr Polym 86:1425–1438

    Article  CAS  Google Scholar 

  • García-González CA, ** M, Gerth J, Alvarez-Lorenzo C, Smirnova I (2015) Polysaccharide-based aerogel microspheres for oral drug delivery. Carbohydr Polym 117:797–806

    Article  CAS  Google Scholar 

  • Gebald C, Wurzbacher JA, Tingaut P, Zimmermann T, Steinfeld A (2011) Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environ Sci Technol 45:9101–9108. https://doi.org/10.1021/es202223p

    Article  CAS  Google Scholar 

  • He Y-L, **e T (2015) Advances of thermal conductivity models of nanoscale silica aerogel insulation material. Appl Therm Eng 81:28–50. https://doi.org/10.1016/j.applthermaleng.2015.02.013

    Article  CAS  Google Scholar 

  • Jadhav PD, Chatti RV, Biniwale RB, Labhsetwar NK, Devotta S, Rayalu SS (2007) Monoethanol amine modified zeolite 13X for CO2 adsorption at different temperatures. Energy Fuel 21:3555–3559

    Article  CAS  Google Scholar 

  • Jiao Y, Wan C, Qiang T, Li J (2016) Synthesis of superhydrophobic ultralight aerogels from nanofibrillated cellulose isolated from natural reed for high-performance adsorbents. Appl Phys A 122:686

  • Kim J, Rubino I, Lee J-Y, Choi H-J (2016) Application of halloysite nanotubes for carbon dioxide capture. Mater Res Express 3. https://doi.org/10.1088/2053-1591/3/4/045019

  • Kyohyun S, Nakwon L, Joonseok K, Eun-Bum C, Chamila G, Mietek J (2015) CO2 adsorption on amine-functionalized periodic mesoporous benzenesilicas. ACS Appl Mater Interfaces 7:6792–6802

    Article  CAS  Google Scholar 

  • Lamy-Mendes A, Silva RF, Duraes L (2018) Advances in carbon nanostructure-silica aerogel composites: a review. J Mater Chem A 6:1340–1369. https://doi.org/10.1039/c7ta08959g

    Article  CAS  Google Scholar 

  • Le Y, Guo D, Cheng B, Yu J (2013) Amine-functionalized monodispersed porous silica microspheres with enhanced CO2 adsorption performance and good cyclic stability. J Colloid Interface Sci 408:173–180. https://doi.org/10.1016/j.jcis.2013.07.014

    Article  CAS  Google Scholar 

  • Lee KY, Tammelin T, Schulfter K, Kiiskinen H, Samela J, Bismarck A (2012) High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose. ACS Appl Mater Interfaces 4:4078

    Article  CAS  Google Scholar 

  • Li N, Chen W, Chen G, Wan X, Tian J (2018) Low-cost, sustainable, and environmentally sound cellulose absorbent with high efficiency for collecting methane bubbles from seawater. ACS Sustain Chem Eng 6: 6370–6377

  • Li D et al (2019) Effects of activation temperature on densities and volumetric CO2 adsorption performance of alkali-activated carbons. Fuel 238:232–239. https://doi.org/10.1016/j.fuel.2018.10.122

    Article  CAS  Google Scholar 

  • Long L-Y, Weng Y-X, Wang Y-Z (2018) Cellulose Aerogels: Synthesis, Applications, and Prospects. Polymers (Basel) 10:623. https://doi.org/10.3390/polym10060623

  • Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer (Guildf) 49:1285–1296

    Article  CAS  Google Scholar 

  • Mishra AK, Ramaprabhu S (2012) Polyaniline/multiwalled carbon nanotubes nanocomposite-an excellent reversible CO2 capture candidate. RSC Adv 2:1746–1750

    Article  CAS  Google Scholar 

  • Nie S, Zhang C, Zhang Q, Zhang K, Zhang Y, Tao P, Wang S (2018) Enzymatic and cold alkaline pretreatments of sugarcane bagasse pulp to produce cellulose nanofibrils using a mechanical method. Ind Crop Prod 124:435–441. https://doi.org/10.1016/j.indcrop.2018.08.033

    Article  CAS  Google Scholar 

  • Niu M, Yang H, Zhang X, Wang Y, Tang A (2016) Amine-impregnated mesoporous silica nanotube as an emerging nanocomposite for CO2 capture. ACS Appl Mater Interfaces 8:17312–17320

    Article  CAS  Google Scholar 

  • Ouyang J, Gu W, Zhang Y, Yang H, ** Y, Chen J, Jiang J (2018a) CO2 capturing performances of millimeter scale beads made by tetraethylenepentamine loaded ultra-fine palygorskite powders from jet pulverization. Chem Eng J 341:432–440. https://doi.org/10.1016/j.cej.2018.02.040

    Article  CAS  Google Scholar 

  • Ouyang J et al (2018b) Polyethyleneimine (PEI) loaded MgO-SiO2 nanofibers from sepiolite minerals for reusable CO2 capture/release applications. Appl Clay Sci 152:267–275. https://doi.org/10.1016/j.clay.2017.11.023

    Article  CAS  Google Scholar 

  • Ouyang J, Zheng C, Gu W, Zhang Y, Yang H, Suib SL (2018c) Textural properties determined CO2 capture of tetraethylenepentamine loaded SiO2 nanowires from alpha-sepiolite. Chem Eng J 337:342–350. https://doi.org/10.1016/j.cej.2017.12.109

    Article  CAS  Google Scholar 

  • Perera F (2018) Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: solutions exist. Int J Environ Res Public Health 15. https://doi.org/10.3390/ijerph15010016

  • Razmkhah M, Mosavian MTH, Moosavi F, Ahmadpour A (2018) CO2 gas adsorption into graphene oxide framework: effect of electric and magnetic field. Appl Surf Sci 456:318–327. https://doi.org/10.1016/j.apsusc.2018.06.075

    Article  CAS  Google Scholar 

  • Sharma P, Baek I-H, Park Y-W, Sung-Chan N, Park J-H, Park S-D, Park SY (2012) Adsorptive separation of carbon dioxide by polyethyleneimine modified adsorbents. Korean J Chem Eng 29:249–262. https://doi.org/10.1007/s11814-011-0158-6

    Article  CAS  Google Scholar 

  • Shen X, Du H, Mullins RH, Kommalapati RR (2017) Polyethylenimine applications in carbon dioxide capture and separation: from theoretical study to experimental work. Energ Technol 5:822–833. https://doi.org/10.1002/ente.201600694

    Article  CAS  Google Scholar 

  • Shi J, Lu L, Guo W, Zhang J, Cao Y (2013) Heat insulation performance, mechanics and hydrophobic modification of cellulose-SiO2 composite aerogels. Carbohydr Polym 98:282–289

    Article  CAS  Google Scholar 

  • Sing KSW (1985) Reporting physisorption data for gas/solid systems-with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  • Tiwari D, Bhunia H, Bajpai PK (2018) Adsorption of CO2 on KOH activated, N-enriched carbon derived from urea formaldehyde resin: kinetics, isotherm and thermodynamic studies. Appl Surf Sci 439:760–771. https://doi.org/10.1016/j.apsusc.2017.12.203

    Article  CAS  Google Scholar 

  • Vilarrasa-Garcia E, Ortigosa-Moya EM, Cecilia JA, Cavalcante CL Jr, Jimenez-Jimenez J, Azevedo DCS, Rodriguez-Castellon E (2015) CO2 adsorption on amine modified mesoporous silicas: effect of the progressive disorder of the honeycomb arrangement. Microporous Mesoporous Mater 209:172–183. https://doi.org/10.1016/j.micromeso.2014.08.032

    Article  CAS  Google Scholar 

  • Wan C, Lu Y, Jiao Y, ** C, Sun Q, Li J (2015) Ultralight and hydrophobic nanofibrillated cellulose aerogels from coconut shell with ultrastrong adsorption properties. J Appl Polym Sci 132:42037

  • Wang Z, Han NM, Wu Y, Liu X, Shen X, Zheng Q, Kim JK (2017) Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly(vinyl alcohol) composites with insulating barriers. Carbon N Y 123:385–394

  • Wang X et al (2018) Synthesis and characterization of amine-modified spherical nanocellulose aerogels. J Mater Sci 53:13304–13315. https://doi.org/10.1007/s10853-018-2595-7

    Article  CAS  Google Scholar 

  • Yang Y, Li H, Chen S, Zhao Y, Li Q (2010) Preparation and characterization of a solid amine adsorbent for capturing CO2 by grafting allylamine onto PAN fiber. Langmuir 26:13897–13902

    Article  CAS  Google Scholar 

  • Yin F, Zhuang L, Luo X, Chen S (2018) Simple synthesis of nitrogen-rich polymer network and its further amination with PEI for CO2 adsorption. Appl Surf Sci 434:514–521. https://doi.org/10.1016/j.apsusc.2017.10.198

    Article  CAS  Google Scholar 

  • Yin F, Wu Z, Luo X, Zhuang L, Ou H, Chen S (2019) Synthesis of nitrogen-rich hollow microspheres for CO2 adsorption. J Mater Sci 54:3805–3816. https://doi.org/10.1007/s10853-018-3107-5

    Article  CAS  Google Scholar 

  • Yu J, Le Y, Cheng B (2012) Fabrication and CO2 adsorption performance of bimodal porous silica hollow spheres with amine-modified surfaces. RSC Adv 2:6784–6791

    Article  CAS  Google Scholar 

  • Zettlemoyer AC (1958) Colloid and surface Chemistry.

  • Zhang F, Ren H, Tong G, Deng Y (2016) Ultra-lightweight poly (sodium acrylate) modified TEMPO-oxidized cellulose nanofibril aerogel spheres and their superabsorbent properties. Cellulose 23:1–12

    Article  Google Scholar 

  • Zhang T, Zhang Y, Wang X, Liu S, Yao Y (2018) Characterization of the nano-cellulose aerogel from mixing CNF and CNC with different ratio. Mater Lett 229:103–106. https://doi.org/10.1016/j.matlet.2018.06.101

    Article  CAS  Google Scholar 

  • Zhao S, Malfait WJ, Guerrero-Alburquerque N, Koebel MM, Nystroem G (2018) Biopolymer aerogels and foams: chemistry, properties, and applications. Angew Chem Int Ed 57:7580–7608. https://doi.org/10.1002/anie.201709014

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Special Fund for Forest Scientific Research in the Public Welfare (201504603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhang.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 812 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Zhang, Y., Jiang, H. et al. Aminosilane-grafted spherical cellulose nanocrystal aerogel with high CO2 adsorption capacity. Environ Sci Pollut Res 26, 16716–16726 (2019). https://doi.org/10.1007/s11356-019-05068-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05068-3

Keywords

Navigation