Log in

Ailanthus altissima (Miller) Swingle seed oil: chromatographic characterization by GC-FID and HS-SPME-GC-MS, physicochemical parameters, and pharmacological bioactivities

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study aimed to identify the physicochemical and the chemical properties of Ailanthus altissima (Miller) Swingle seed oil and to evaluate its in vitro antioxidant and antibacterial activities and in vivo analgesic and anti-inflammatory activities. The fatty acids’ composition was determined using GC-FID. The oil was screened for antioxidant activity by DPPH test. The analgesic and anti-inflammatory activities were determined using the acetic acid writhing test in mice and the carrageenan-induced paw edema assay in rats, respectively. Volatile compounds were characterized by HS-SPME-GC-MS. A. altissima produces seeds which yielded 17.32% of oil. The seed oil was characterized by a saponification number of 192.6 mg KOH∙g of oil, a peroxide value of 11.4 meq O2∙kg of oil, a K232 of 4.04, a K270 of 1.24, and a phosphorus content of 126.2 ppm. The main fatty acids identified were palmitic (3.06%), stearic (1.56%), oleic (38.35%), and linoleic acids ones (55.76%). The main aroma compounds sampled in the headspace were carbonyl derivatives. The oil presents an important antioxidant activity (IC50 = 24.57 μg/mL) and a modest antimicrobial activity. The seed oil at 1 g/kg showed high analgesic (91.31%) and anti-inflammatory effects (85.17%). The presence of high levels of unsaturated fatty acids and the noteworthy antioxidant capacity of the seed oil can hypothesize its use as an analgesic and anti-inflammatory agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akbar E, Yaakob Z, Kamarudin SK et al (2009) Characteristic and composition of Jatropha curcas oil seed from Malaysia and its potential as biodiesel feedstock feedstock. Eur J Sci Res 29:396–403

    Google Scholar 

  • Akkol EK, Güvenç A, Yesilada E (2009) A comparative study on the antinociceptive and anti-inflammatory activities of five Juniperus taxa. J Ethnopharmacol 125:330–336. https://doi.org/10.1016/j.jep.2009.05.031

    Article  Google Scholar 

  • Alarcón de la Lastra C, Barranco MD, Motilva V, Herrerías JM (2001) Mediterranean diet and health: biological importance of olive oil. Curr Pharm Des 7:933–950

    Article  Google Scholar 

  • Albouchi F, Hassen I, Casabianca H, Hosni K (2013) Phytochemicals, antioxidant, antimicrobial and phytotoxic activities of Ailanthus altissima (Mill.) Swingle leaves. S Afr J Bot 87:164–174. https://doi.org/10.1016/j.sajb.2013.04.003

    Article  CAS  Google Scholar 

  • AOAC (1990) Methods 970.39, 958.05,. In: Official Methods of Analyses of the Association of Official Analytical Chemists, 15th edn. Washington, DC, USA

  • Awad AB, Chan KC, Downie AC, Fink CS (2009) Peanuts as a source of β -sitosterol , a sterol with anticancer properties. Nutr Cancer 36:238–241. https://doi.org/10.1207/S15327914NC3602

    Article  Google Scholar 

  • Balazs IL (1987) Refining and use of byproducts from various fats and oils. J Am Oil Chem Soc 64:1126–1127

    Article  Google Scholar 

  • Borgi W, Recio M-C, Ríos JL, Chouchane N (2008) Anti-inflammatory and analgesic activities of flavonoid and saponin fractions from Zizyphus lotus (L .) lam. S Afr J Bot 74:320–324. https://doi.org/10.1016/j.sajb.2008.01.009

    Article  CAS  Google Scholar 

  • Brizicky GK (1962) The genera of Simaroubaceae and Burseraceae in the southeastern United States. J Arnold Arboretum, XLIII 173–186

  • Cabral CE, Klein MRTS (2017) Review article phytosterols in the treatment of hypercholesterolemia and prevention of cardiovascular diseases. Arq Bras Cardiol 109:475–482. https://doi.org/10.5935/abc.20170158

    Article  CAS  Google Scholar 

  • Cerchiara T, Chidichimo G, Ragusa MI, Belsito EL, Liguori A, Arioli A (2010) Characterization and utilization of Spanish broom ( Spartium junceum L .) seed oil. Ind Crop Prod 31:423–426. https://doi.org/10.1016/j.indcrop.2009.11.003

    Article  CAS  Google Scholar 

  • Chahdoura H, Adouni K, Mhadhebi L et al (2017a) Bioactivity and chemical characterization of Opuntia macrorhiza Engelm. seed oil: potential food and pharmaceutical applications. Food Funct 8:2739–2747. https://doi.org/10.1039/c7fo00731k

    Article  CAS  Google Scholar 

  • Chahdoura H, El Bok S, Refifa T et al (2017b) Activity of anti-inflammatory, analgesic and antigenotoxic of the aqueous flower extracts of Opuntia microdasys Lem.Pfeiff. J Pharm Pharmacol 69:1056–1063. https://doi.org/10.1111/jphp.12734

    Article  CAS  Google Scholar 

  • Christie WW (2003) Determination of lipid profiles by gas chromatography. In: Lipid analysis, 3rd edn. The Oily Press, Bridgwater (UK), pp 118–121

  • Chu BS, Baharin BS, Quek SY (2002) Factors affecting pre-concentration of tocopherols and tocotrienols from palm fatty acid distillate by lipase-catalysed hydrolysis. Food Chem 79:55–59

    Article  CAS  Google Scholar 

  • Collier HJ, Dinneen LC, Johnson CA, Schneider C (1968) The abdominal constriction response and its suppression by analgesic drugs in the mouse. Br J Pharmacol Chemother 32:295–310

    Article  CAS  Google Scholar 

  • Cushnie TPT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356. https://doi.org/10.1016/j.ijantimicag.2005.09.002

    Article  CAS  Google Scholar 

  • Davies PA (1942) The history, distribution, and value of Ailanthus in North America. Trans Ky Acad Sci 9:12–14

    Google Scholar 

  • De Leonardis A, Angelico R, Macciola V, Ceglie A (2013) Effects of polyphenol enzymatic-oxidation on the oxidative stability of virgin olive oil. Food Res Int 54:2001–2007. https://doi.org/10.1016/j.foodres.2013.04.034

    Article  CAS  Google Scholar 

  • Deng J, Liu Q, Zhang Q, Zhang C, Liu D, Fan D, Yang H (2018) Comparative study on composition , physicochemical and antioxidant characteristics of different varieties of kiwifruit seed oil in China. Food Chem 264:411–418. https://doi.org/10.1016/j.foodchem.2018.05.063

    Article  CAS  Google Scholar 

  • Dubois V, Breton S, Linder M, Fanni J, Parmentier M (2007) Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. Eur J Lipid Sci Technol 109:710–732. https://doi.org/10.1002/ejlt.200700040

    Article  CAS  Google Scholar 

  • Đurđevića S, Šavikinb K, Živkovićb J et al (2018) Antioxidant and cytotoxic activity of fatty oil isolated by supercritical fl uid extraction from microwave pretreated seeds of wild growing Punica granatum L. J Supercrit Fluids 133:225–232. https://doi.org/10.1016/j.supflu.2017.10.021

    Article  CAS  Google Scholar 

  • El Ayeb-zakhama E, Ben S, Sakka-rouis L, Flamini G (2014) Chemical composition and phytotoxic effects of essential oils obtained from Ailanthus altissima (mill.) S wingle cultivated in Tunisia. Chem Biodivers 11:1216–1227

    Article  CAS  Google Scholar 

  • El Ayeb-Zakhamaa A, Sakka-Rouis L, Flamini G, et al (2017) Chemical composition and allelopathic potential of essential oils from Citharexylum spinosum L. grown in Tunisia. Chem Biodivers 14:. doi: https://doi.org/10.1002/cbdv.201600225

  • El Kinawy OS (2010) Characterization of Egyptian Jatropha oil and its oxidative stability. Energy Sources, Part A 32:119–127. https://doi.org/10.1080/15567030802089102

    Article  CAS  Google Scholar 

  • Fadhil AB, Alhayali MA, Saeed LI (2017) Date ( Phoenix dactylifera L .) palm stones as a potential new feedstock for liquid bio-fuels production. Fuel 210:165–176. https://doi.org/10.1016/j.fuel.2017.08.059

    Article  CAS  Google Scholar 

  • Fan S, Liang T, Yu H, Bi Q, Li G, Wang L (2016) Kernel characteristics , oil contents , fatty acid compositions and biodiesel properties in develo** Siberian apricot ( Prunus sibirica L .) seeds. Ind Crop Prod 89:195–199. https://doi.org/10.1016/j.indcrop.2016.05.012

    Article  CAS  Google Scholar 

  • FDA (Food and Drug Administration) (1974) Fat and oil regulations, food and drug decree of 1974, No 35: 2-6. Federal Ministry of Health

  • Ferrari RA, Oliveira V da S, Scabio A (2005) Oxidative stability of biodiesel from soybean oil fatty acid ethyl esters. Sci Agric 62:291–295

    Article  CAS  Google Scholar 

  • Fezai M, Senovilla L, Jemaà M, Ben-attia M (2013) Analgesic , anti-inflammatory and anticancer activities of extra virgin olive oil. J Lipids 2013:1–8

    Article  CAS  Google Scholar 

  • Gohari AR, Hajimehdipoor H, Saeidnia S, Ajani Y, Hadjiakhoondi A (2011) Antioxidant activity of some medicinal species using FRAP assay. J Med Plant 10:7

    Google Scholar 

  • Goli SAH, Sahafi SM, Rashidi B, Rahimmalek M (2013) Novel oilseed of Dracocephalum kotschyi with high n-3 to n-6 polyunsaturated fatty acid ratio. Ind Crop Prod 43:188–193. https://doi.org/10.1016/j.indcrop.2012.07.036

    Article  CAS  Google Scholar 

  • Gouda N, Singh RK, Meher SN, Panda AK (2016) Production and characterization of bio oil and bio char from fl ax seed residue obtained from supercritical fl uid extraction industry. J Energy Inst 90:265–275. https://doi.org/10.1016/j.joei.2016.01.003

    Article  CAS  Google Scholar 

  • Harwood JL, Yaqoob P (2002) Nutritional and health aspects of olive oil. Eur J Lipid Sci Technol 104:685–697

    Article  CAS  Google Scholar 

  • Henry GE, Momin RA, Nair MG, Dewitt DL (2002) Antioxidant and cyclooxygenase activities of fatty acids found in food. J Agric Food Chem 50:2231–2234

    Article  CAS  Google Scholar 

  • Hernandez B, Luna G, Garcia O, Mendoza MR, Azuara E, Beristain CI, Jimenez M (2013) Extraction and characterization of Oecopetalum mexicanum seed oil. Ind Crop Prod 43:355–359. https://doi.org/10.1016/j.indcrop.2012.07.022

    Article  CAS  Google Scholar 

  • Hoseini SS, Naja G, Ghobadian B et al (2018a) Ailanthus altissima (tree of heaven) seed oil : characterisation and optimisation of ultrasonication-assisted biodiesel production. Fuel 220:621–630. https://doi.org/10.1016/j.fuel.2018.01.094

    Article  CAS  Google Scholar 

  • Hoseini SS, Najafi G, Ghobadian B, Mamat R, Ebadi MT, Yusaf T (2018b) Novel environmentally friendly fuel: the effects of nanographene oxide additives on the performance and emission characteristics of diesel engines fuelled with Ailanthus altissima biodiesel. Renew Energy 125:283–294. https://doi.org/10.1016/j.renene.2018.02.104

    Article  CAS  Google Scholar 

  • Houshia OJ, Qutit A, Zaid O et al (2014) Determination of total polyphenolic antioxidants contents in west-bank olive oil. J Nat Sci Res 4:71–76

    Google Scholar 

  • ISO (1991) Animal and vegetable fats and oils. In: ISO 6799: determination of composition of the sterol fraction. Method using gas chromatography

  • ISO (2002) Animal and vegetable fats and oils. In: ISO 3657: determination of saponification value

  • ISO (2007) Animal and vegetable fats and oils. In: ISO 3960: determination of peroxide value, iodometric (visual) endpoint determination

  • ISO (2009a) Animal and vegetable fats and oils. In: ISO 660: determination of acid value and acidity, ISO 3961: determination of iodine value

  • ISO (2009b) Determination of acid value and acidity. In: ISO 3961: determination of iodine value

  • ISO (2011) Animal and vegetable fats and oils. In: ISO 3656: determination of ultraviolet absorbance expressed as specific UV extinction

  • IUPAC (1987) Section 2: oils and fats. In: Paquot C, Hautfenne A (eds) Standard methods for the analysis of oil seeds, fats and derivatives, 7th revise. International Union of Pure and Applied Chemistry. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Kalogeropoulos N, Tsimidou MZ (2014) Antioxidants in Greek virgin olive oils. Antioxydants 3(2):387–413

    Article  CAS  Google Scholar 

  • Lajili S, Azouaou SA, Turki M, Muller CD, Bouraoui A (2016a) Anti-inflammatory, analgesic activities and gastro-protective effects of the phenolic contents of the red alga, Laurencia obtusa. Eur J Integr Med 8:298–306. https://doi.org/10.1016/j.eujim.2015.12.006

    Article  Google Scholar 

  • Lajili S, Deghrigue M, Bel Haj Amor H, Muller CD, Bouraoui A (2016b) In vitro immunomodulatory activity and in vivo anti-inflammatory and analgesic potential with gastroprotective effect of the Mediterranean red alga Laurencia obtusa. Pharm Biol 54:2486–2495. https://doi.org/10.3109/13880209.2016.1160937

    Article  CAS  Google Scholar 

  • Liu P, Xu Y, Gao X, Zhu XY, du MZ, Wang YX, Deng RX, Gao JY (2017) Industrial crops & products optimization of ultrasonic-assisted extraction of oil from the seed kernels and isolation of monoterpene glycosides from the oil residue of Paeonia. Ind Crop Prod 107:260–270. https://doi.org/10.1016/j.indcrop.2017.04.013

    Article  CAS  Google Scholar 

  • Mariod A, Matthäus B, Eichner K, Hussein IH (2015) Phenolic compounds of three unconventional sudanese oils. Acta Sci Pol Technol Aliment 14(1):63–69

    Article  Google Scholar 

  • Marzouk B, Marzouk Z, Haloui E, Fenina N, Bouraoui A, Aouni M (2010) Screening of analgesic and anti-inflammatory activities of Citrullus colocynthis from southern Tunisia. J Ethnopharmacol 128:15–19. https://doi.org/10.1016/j.jep.2009.11.027

    Article  Google Scholar 

  • Mohan MR, Chandra R, Jala R et al (2016) Swietenia mahagoni seed oil : a new source for biodiesel production. Ind Crop Prod 90:28–31. https://doi.org/10.1016/j.indcrop.2016.06.010

    Article  CAS  Google Scholar 

  • Nasri N, Khaldi A, Fady B, Triki S (2005) Fatty acids from seeds of Pinus pinea L .: composition and population profiling. Phytochemistry 66:1729–1735. https://doi.org/10.1016/j.phytochem.2005.05.023

    Article  CAS  Google Scholar 

  • Nayak BS, Patel KN (2010) Physicochemical characterization of seed and seed oil of Jatropha curcas L . collected from Bardoli ( South Gujarat ). Sains Malays 39:951–955

    CAS  Google Scholar 

  • Nehdi I (2011a) Characteristics , chemical composition and utilisation of Albizia julibrissin seed oil. Ind Crop Prod 33:30–34. https://doi.org/10.1016/j.indcrop.2010.08.004

    Article  CAS  Google Scholar 

  • Nehdi IA (2011b) Characteristics and composition of Washingtonia filifera ( Linden ex André ) H . Wendl . seed and seed oil. Food Chem 126:197–202. https://doi.org/10.1016/j.foodchem.2010.10.099

    Article  CAS  Google Scholar 

  • Nehdi I, Omri S, Khalil MI, Al-resayes SI (2010) Characteristics and chemical composition of date palm ( Phoenix canariensis ) seeds and seed oil. Ind Crop Prod 32:360–365. https://doi.org/10.1016/j.indcrop.2010.05.016

    Article  CAS  Google Scholar 

  • Nehdi IA, Sbihi H, Tan PC et al (2012) Characteristics, composition and thermal stability of Acacia senegal ( L .) Willd . seed oil. Ind Crop Prod 36:54–58. https://doi.org/10.1016/j.indcrop.2011.08.005

    Article  CAS  Google Scholar 

  • Neuza J, Da Silva AC, Aranha CPM (2016) Antioxidant activity of oils extracted from orange (Citrus sinensis) seeds. An Acad Bras Cienc 88:951–958

    Article  CAS  Google Scholar 

  • Nogala-Kalucka M, Rudzinska M, Zadernowski R, Siger A, Krzyzostaniak I (2010) Phytochemical content and antioxidant properties of seeds of unconventional oil plants. J Am Oil Chem Soc 87:1481–1487. https://doi.org/10.1007/s11746-010-1640-8

    Article  CAS  Google Scholar 

  • Oomah BD, Busson M, Godfrey DV, Drover JCG (2002) Characteristics of hemp ( Cannabis sativa L.) seed oil. Food Chem 76(1):33–43

    Article  CAS  Google Scholar 

  • Ouilly JT, Bazongo P, Bougma A, Kaboré N, Lykke AM, Ouédraogo A, Bassolé IHN (2017) Chemical composition , physicochemical characteristics , and nutritional value of Lannea kerstingii seeds and seed oil. J Anal Methods Chem 2017:1–7

    Article  CAS  Google Scholar 

  • Ramadan MF, Kroh LW, Mörsel J-T (2003) Radical scavenging activity of black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.), and Niger (Guizotia abyssinica Cass.) crude seed oils and oil fractions. J Agric Food Chem 51:6961–6969

    Article  CAS  Google Scholar 

  • Ramadan FM, Sharanabasappa G, Parmjyothi S et al (2006) Profile and levels of fatty acids and bioactive constituents in mahua butter from fruit-seeds of buttercup tree [ Madhuca longifolia ( Koenig )]. Eur Food Res Technol 222:710–718. https://doi.org/10.1007/s00217-005-0155-2

    Article  CAS  Google Scholar 

  • Ramadan MF, Zayed R, El-Shamy H (2007) Screening of bioactive lipids and radical scavenging potential of some solanaceae plants. Food Chem 103:885–890. https://doi.org/10.1016/j.foodchem.2006.09.040

    Article  CAS  Google Scholar 

  • Rosa MDI, Giroud JP, Willouchby DA (1971) Studies of the mediators of the acute inflammatory response induced in rats in different sites by carrageenan and turpentine. J Pathol 104:15–29

    Article  Google Scholar 

  • Salarbashi D, Tafaghodi M (2018) International journal of biological macromolecules an update on physicochemical and functional properties of newly seed gums. Int J Biol Macromol 119:1240–1247. https://doi.org/10.1016/j.ijbiomac.2018.06.161

    Article  CAS  Google Scholar 

  • Sayed Ahmed B, Talou T, Saad Z et al (2018) Fennel oil and by-products seed characterization and their potential applications. Ind Crop Prod 111:92–98. https://doi.org/10.1016/j.indcrop.2017.10.008

    Article  CAS  Google Scholar 

  • Singh S, Nair V, Jain S, Gupta YK (2008) Evaluation of anti-inflammatory activity of plant lipids containing α-linolenic acid. Indian J Exp Biol 46:453–456

    Google Scholar 

  • Singh B, Singh JP, Kaur A, Singh N (2017) Phenolic composition and antioxidant potential of grain legume seeds: a review. Food Res Int 101:1–16

    Article  CAS  Google Scholar 

  • Snoussi M, Noumi E, Trabelsi N, Flamini G, Papetti A, de Feo V (2015) Mentha spicata essential oil: chemical composition, antioxidant and antibacterial activities against planktonic and biofilm cultures of vibrio spp. strains. Molecules 20:14402–14424. https://doi.org/10.3390/molecules200814402

    Article  CAS  Google Scholar 

  • Soobrattee MA, Neergheen VS, Luximon-ramma A et al (2005) Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutat Res 579:200–213. https://doi.org/10.1016/j.mrfmmm.2005.03.023

    Article  CAS  Google Scholar 

  • Tsaknis J, Lalas S (2002) Stability during frying of Moringa oleifera seed oil variety Periyakulam 1. J Food Compos Anal 15:79–101. https://doi.org/10.1006/jfca.2001.1043

    Article  CAS  Google Scholar 

  • Tura D, Gigliotti C, Pedo S et al (2007) Influence of cultivar and site of cultivation on levels of lipophilic and hydrophilic antioxidants in virgin olive oils (Olea Europea L.) and correlations with oxidative stability. Sci Hortic 112:108–119. https://doi.org/10.1016/j.scienta.2006.12.036

    Article  CAS  Google Scholar 

  • Von SC, Harris WS (2007) Cardiovascular benefits of omega-3 fatty acids. Cardiovasc Res 73:310–315. https://doi.org/10.1016/j.cardiores.2006.08.019

    Article  CAS  Google Scholar 

  • Walum E (1998) Acute oral toxicity. Environ Health Perspect 106:497–503

    CAS  Google Scholar 

  • Wink M (2015) Modes of action of herbal medicines and plant secondary metabolites. medicines 2:251–286. https://doi.org/10.3390/medicines2030251

    Article  CAS  Google Scholar 

  • Winter CA, Risley EA, Nuss GW (1962) Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs. Proc Soc Exp Biol Med 111:544–547

    Article  CAS  Google Scholar 

  • Yang B, Karlsson RM, Oksman PH, Kallio HP (2001) Phytosterols in sea buckthorn (Hippophaë rhamnoides L.) berries: identification and effects of different origins and harvesting times. J Agric Food Chem 49:5620–5629

    Article  CAS  Google Scholar 

  • Yang X, Zhang D, Song L et al (2017) Chemical profile and antioxidant activity of the oil from Peony seeds ( Paeonia suffruticosa Andr .). Oxidative Med Cell Longev 2017:1–11

    Google Scholar 

  • Ye Y, Guo Y, Luo Y (2012) Anti-inflammatory and analgesic activities of a novel biflavonoid from shells of Camellia oleifera. Int J Mol Sci 13:12401–12411. https://doi.org/10.3390/ijms131012401

    Article  CAS  Google Scholar 

  • Yıldız M, Gürcan TŞ, Özdemir M (1998) Oil composition of pistachio nuts (Pistacia vera L .) from Turkey. Lipid/Fett 100:84–86

    Article  Google Scholar 

  • Yin H, Sathivel S (2010) Physical properties and oxidation rates of unrefined menhaden oil ( Brevoortia patronus ). J Food Sci 75:163–168. https://doi.org/10.1111/j.1750-3841.2010.01532.x

    Article  CAS  Google Scholar 

  • Yu H, Fan S, Bi Q, Wang S, Hu X, Chen M, Wang L (2017) Seed morphology , oil content and fatty acid composition variability assessment in yellow horn ( Xanthoceras sorbifolium Bunge ) germplasm for optimum biodiesel production. Ind Crop Prod 97:425–430. https://doi.org/10.1016/j.indcrop.2016.12.054

    Article  CAS  Google Scholar 

  • Zhuqiu S, Dongxian X (2014) The identity of Ailanthus guangxiensis (Simaroubaceae) and lectotypification of A. integrifolia Lamarck. Phytotaxa 173:177–180

    Article  Google Scholar 

  • Ziani BEC, Barros L, Boumehira AZ, Bachari K, Heleno SA, Alves MJ, Ferreira ICFR (2018a) Profiling polyphenol composition by HPLC-DAD-ESI/MSn and the antibacterial activity of infusion preparations obtained from four medicinal plants. Food Funct 9:149–159. https://doi.org/10.1039/C7FO01315A

    Article  CAS  Google Scholar 

  • Ziani BEC, Heleno SA, Bachari K et al (2018b) Phenolic compounds characterization by LC-DAD- ESI/MSn and bioactive properties of Thymus algeriensis Boiss. & Reut. and Ephedra alata Decne. Food Res Int. https://doi.org/10.1016/j.foodres.2018.08.041

Download references

Acknowledgements

The authors acknowledge Pr. Fethia Khemiss for her assistance to do the pharmacological activities and Pr Nadra Kerkni for reviewing the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asma EL Ayeb-Zakhama.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible editor: Giovanni Benelli

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

EL Ayeb-Zakhama, A., Chahdoura, H., Ziani, B.E.C. et al. Ailanthus altissima (Miller) Swingle seed oil: chromatographic characterization by GC-FID and HS-SPME-GC-MS, physicochemical parameters, and pharmacological bioactivities. Environ Sci Pollut Res 26, 14137–14147 (2019). https://doi.org/10.1007/s11356-019-04659-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-04659-4

Keywords

Navigation