Log in

2,4-Dichlorophenoxyacetic acid herbicide effects on zebrafish larvae: development, neurotransmission and behavior as sensitive endpoints

  • Multi-Stressors in Freshwater and Transitional Environments: from Legacy Pollutants to Emerging Ones
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Assessment of pesticides toxicity using zebrafish early life stages is relevant for aquatic systems safety. This study aimed to evaluate the short-term effects of 2,4-dichlorophenoxyacetic acid (2,4-D) on zebrafish (Danio rerio) embryos from 3 h post fertilization to 96 hpf. A set of 2,4-D concentrations ranging from 0.32 to 80 mg/L were tested and median lethal concentration (LC50) at 96-h was calculated as 2.86 mg/L. A sub-teratogenic concentrations range from 0.02 to 0.8 mg/L was then used to assess effects at ontogenic, biochemical, and behavioral levels. The main developmental defects were tail deformities and pericardial edema at concentrations equal or above 0.32 mg/L. Cholinesterase activity (at 96 hpf) and larvae swimming behavior (at 120 hpf) were affected even at the lowest tested dose (0.02 mg/L). The behavior analysis was a sensitive endpoint, with a decrease in the swimming distance of exposed larvae during light period. The effect of 2,4-D in ChE was translated by an inhibition of the enzyme activity in all treated groups. These findings demonstrate that 2,4-D can alter the cholinergic system by affecting ChE activity which may be involved in the locomotion reduction of exposed larvae and emphasize the potential of neurotransmission and behavioral endpoints as early warning signs of herbicides contamination in aquatic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad F, Noldus LPJJ, Tegelenbosch RAJ, Richardson MK (2012) Zebrafish embryos and larvae in behavioural assays. Behaviour 149:1241–1281. https://doi.org/10.1163/1568539X-00003020

    Article  Google Scholar 

  • Altenhofen S, Wiprich MT, Nery LR, Leite CE, Vianna MR, Bonan CD (2017) Manganese(II) chloride alters behavioral and neurochemical parameters in larvae and adult zebrafish. Aquat Toxicol 182:172–183. https://doi.org/10.1016/j.aquatox.2016.11.013

    Article  CAS  Google Scholar 

  • Andrade TS, Henriques JF, Almeida AR, Machado AL, Koba O, Giang PT, Soares AMVM, Domingues I (2016) Carbendazim exposure induces developmental, biochemical and behavioural disturbance in zebrafish embryos. Aquat Toxicol 170:390–399. https://doi.org/10.1016/j.aquatox.2015.11.017

    Article  CAS  Google Scholar 

  • Arivu I, Muniyan M, Muthulingam M, Parthiban P, Ambedkar G, Kamalkanth S (2015) Toxicity of 2,4-Dichlorophenoxyacetic acid on freshwater fingerlings Labeo Rohita (Hamilton). World J Pharm Pharm Sci 4:1173–1190

    CAS  Google Scholar 

  • Atamaniuk TM, Kubrak OI, Storey KB, Lushchak VI (2013) Oxidative stress as a mechanism for toxicity of 2,4-dichlorophenoxyacetic acid (2,4-D): studies with goldfish gills. Ecotoxicology 22:1498–1508. https://doi.org/10.1007/s10646-013-1136-z

    Article  CAS  Google Scholar 

  • Bailey J, Oliveri A, Levin ED (2013) Zebrafish model systems for developmental neurobehavioral toxicology. Birth Defects Res C Embryo Today 99(1):14–23. https://doi.org/10.1002/bdrc.21027

    Article  CAS  Google Scholar 

  • Ben Salem F, Ben Said O, Aissa P, Mahmoudi E, Monperrus M, Grunberger O, Duran R (2016) Pesticides in Ichkeul Lake–Bizerta LagoonWatershed in Tunisia: use, occurrence, and effects on bacteria and free-living marine nematodes. Environ Sci Pollut Res 23(1):36–48. https://doi.org/10.1007/s11356-015-4991-8

    Article  CAS  Google Scholar 

  • Benli ACK, Sarikaya R, Sepici-Dincel A, Selvi M, Sahin D, Erkoc- F (2007) Investigation of acute toxicity of (2,4-dichlorophenoxy) acetic acid (2,4-D) herbicide on crayfish (Astacus leptodactylus Esch. 1823). Pestic Biochem Physiol 88:296–299. https://doi.org/10.1016/j.pestbp.2007.01.004

    Article  CAS  Google Scholar 

  • Borges S, Dzubow C, Orrick G, Stavola A (2004) 2,4-Dichlorophenoxyacetic acid analysis of risks to endangered and threatened salmon and steelhead. Environmental Field Branch Office of Pesticide Programs, USA

  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye-binding. Anal Biochem 72:248–254

    CAS  Google Scholar 

  • Browne AM, Moore PA (2014) The effects of sublethal levels of 2,4 dichlorophenoxyacetic acid herbicide (2,4-D) on feeding behaviors of the crayfish O. rusticus. Arch Environ Contam Toxicol 67:234–244

    CAS  Google Scholar 

  • Cao FJ, Liu XS, Wang CJ, Zheng MQ, Li XF, Qiu LH (2016) Acute and short term developmental toxicity of cyhalofop-butyl to zebrafish (Danio rerio). Environ Sci Pollut Res 23:10080–10089. https://doi.org/10.1007/s11356-016-6236-x

    Article  CAS  Google Scholar 

  • Chen Q, Yu L, Yang L, Zhou B (2012) Bioconcentration and metabolism of decabromodiphenyl ether (BDE-209) result in thyroid endocrine disruption in zebrafish larvae. Aquat Toxicol 110-111(110):141–148. https://doi.org/10.1016/j.aquatox.2012.01.008

    Article  CAS  Google Scholar 

  • Colón-Cruz L, Kristofco L, Crooke-Rosado J, Acevedo A, Torrado A, Brooks BW, Sosa MA, Behra M (2018) Alterations of larval photo-dependent swimming responses (PDR): new endpoints for rapid and diagnostic screening of aquatic contamination. Ecotoxicol Environ Saf 147:670–680

    Google Scholar 

  • Colwill RM, Creton R (2011) Locomotor behaviors in zebrafish (Danio rerio) larvae. Behav Process 86:222–229. https://doi.org/10.1016/j.beproc.2010.12.003

    Article  Google Scholar 

  • De Gaspar I, Blanquez MJ, Fraile B, Paniagua R, Arenas MI (1999) The hatching gland cells of trout embryos: characterisation of N- and Olinked oligosaccharides. J Anat 194:109–118

    Google Scholar 

  • Domingues I, Oliveira R, Lourenço J, Grisolia CK, Mendo S, Soares AMVM (2010) Biomarkers as a tool to assess effects of chromium (VI): comparison of responses in zebrafish early life stages and adults. Comp Biochem Physiol C Toxicol Pharmacol 152(3):338–345

    Google Scholar 

  • Eissa BL, Ossana NA, Ferrari L, Salibian A (2010) Quantitative behavioral parameters as toxicity biomarkers: fish responses to waterborne cadmium. Arch Environ Contam Toxicol 58:1032–1039

    CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    CAS  Google Scholar 

  • Farah MA, Ateeq B, Ali MN, Sabir R, Ahmad W (2004) Studies on lethal concentrations and toxicity stress of some xenobiotics on aquatic organisms. Chemosphere 55:257–265

    CAS  Google Scholar 

  • Félix LM, Antunes LM, Coimbra AM, Valentim AM (2017) Behavioral alterations of zebrafish larvae after early embryonic exposure to ketamine. Psychopharmacology 234(4):549–558. https://doi.org/10.1007/s00213-016-4491-7

    Article  CAS  Google Scholar 

  • Fent K, Meier W (1992) Tributyltin-induced effects on early life stages of minnows Phoxinusphoxinus. Arch Environ Contam Toxicol 22:428–438

    CAS  Google Scholar 

  • Fonseca MB, Glusczak L, Moraes BS, Menezes CC, Pretto A, Tierno MA, Zanella R, Gonçalves FF, Loro VL (2008) The 2,4-D herbicide effects on acetylcholinesterase activity and metabolic parameters of piava freshwater fish (Leporinus obtusidens). Ecotoxicol Environ Saf 69:416–420. https://doi.org/10.1016/j.ecoenv.2007.08.006

    Article  CAS  Google Scholar 

  • Gerhardt A (2007) Aquatic behavioral ecotoxicology prospects and limitations. Hum Ecol Risk Assess Int J 13:481–491

    Google Scholar 

  • Gonzalez ST, Remick D, Creton R, Colwill RM (2016) Effects of embryonic exposure to polychlorinated biphenyls (PCBs) on anxiety-related behaviors in larval zebrafish. Neurotoxicology 642(53):93–101

    Google Scholar 

  • Guerrero-Estévez SM, López-López E (2016) Effects of endocrine disruptors on reproduction in viviparous teleosts with intraluminal gestation. Rev Fish Biol Fish 26:563–587

    Google Scholar 

  • Howard PHE (1991) 2,4-D. Handbook of environmental fate and exposure data for organic chemicals. Lewis, Chelsea, pp 145–156

    Google Scholar 

  • Irons TD, MacPhail RC, Hunter DL, Padilla S (2010) Acute neuroactive drug exposures alter locomotor activity in larval zebrafish. Neurotoxicol Teratol 32:84–90

    CAS  Google Scholar 

  • ** M, Zhang X, Wang L, Huang C, Zhang Y, Zhao M (2009) Developmental toxicity of bifenthrin in embryo-larval stages of zebrafish. Aquat Toxicol 95:347–354

    CAS  Google Scholar 

  • ** Y, Liu Z, Fang L, Yang Y, Tao P, Fu Z (2015) Embryonic exposure to cadmium (ii) and chromium (vi) induce behavioral alterations, oxidative stress and immunotoxicity in zebrafish (Danio rerio). Neurotoxicol Teratol 48:9–17

    CAS  Google Scholar 

  • Kalueff AV, Gebhardt M, Stewart AM, Cachat JM, Brimmer M, Chawla JS, Craddock C, Kyzar EJ, Roth A, Landsman S, Gaikwad S, Robinson K, Baatrup E, Tierney K, Shamchuk A, Norton W, Miller N, Nicolson T, Braubach O, Gilman CP, Pittman J, Rosemberg DB, Gerlai R, Echevarria D, Lamb E, Neuhauss SC, Weng W, Bally-Cuif L, Schneider H (2013) Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish 10:70–86. https://doi.org/10.1089/zeb.2012.0861

    Article  Google Scholar 

  • Kane AS, Salierno JD, Gipson GT, Molteno TC, Hunter C (2004) A video-based movement analysis system to quantify behavioral stress responses of fish. Water Res 38:3993–4001

    CAS  Google Scholar 

  • Kimmel CB, Patterson J, Kimmel RO (1974) The development and behavioral characteristics of the startle response in the zebrafish. Dev Psychobiol 7:47–60

    CAS  Google Scholar 

  • Kubrak OI, Atamaniuk TM, Storey KB, Lushchak VI (2013) Goldfish can recover after short-term exposure to 2,4-dichlorophenoxyacetate: use of blood parameters as vital biomarkers. Comp Biochem Physiol C 157(3):259–265

    CAS  Google Scholar 

  • Kuster E, Altenburger R (2007) Suborganismic and organismic effects of aldicarb and its metabolite aldicarb-sulfoxide to the zebrafish embryo (Danio rerio). Chemosphere 68:751–760

    Google Scholar 

  • Li K, Wu JQ, Jiang LL, Shen LZ, Li JY, He ZH, Wei P, Lv Z, He MF (2017) Developmental toxicity of 2,4-dichlorophenoxyacetic acid in zebrafish embryos. Chemosphere 171:40–48. https://doi.org/10.1016/j.chemosphere.2016.12.032

    Article  CAS  Google Scholar 

  • Little EE, Archeski RD, Flerov BA, Kozlovskaya VI (1990) Behavioral indicators of sublethal toxicity in rainbow trout. Arch Environ Contam Toxicol 19:380–385

    CAS  Google Scholar 

  • Matviishyn TM, Kubrak OI, Husak VV, Storey KB, Lushchak VI (2014) Tissue specific induction of oxidative stress in goldfish by 2,4-dichlorophenoxyacetic acid: mild in brain and moderate in liver and kidney. Environ Toxicol Pharmacol 37:861–869

    CAS  Google Scholar 

  • Meehan WR, Norris LA, SEARS HS (1974) Toxicity of various formulations of 2,4-D to salmonids in Southeast Alaska. J Fish Res Board Can 31:480–485

    CAS  Google Scholar 

  • Mohammed A (2013) Why are early life stages of aquatic organisms more sensitive totoxicants than adults? New insights into toxicity and drug testing. InTech Publishing, London

    Google Scholar 

  • Mu XY, Pang S, Sun XZ, Gao JJ, Chen JY, Chen XF, Li XF, Wang CJ (2013) Evaluation of acute and developmental effects of difenoconazole via multiple stage zebrafish assays. Environ Pollut 175:147–157

    CAS  Google Scholar 

  • Nobonita D, Suchismita D (2013) Chlorpyrifos toxicity in fish: a review. Curr World Environ 8(1):77–84

    Google Scholar 

  • Nwani CD, Lakra WS, Nagpure NS, Kumar R, Kushwaha B, Srivastava SK (2010) Toxicity of the herbicide atrazine: effects on lipid peroxidation and activities of antioxidant enzymes in the freshwater fish Channa Punctatus (Bloch). Int J Environ Res Public Health 7:3298–3312

    CAS  Google Scholar 

  • OECD Organization for Economic Co-Operation and Development (2013) Guidelines for the testing of chemicals, section 2: effects on biotic systems. Test no. 236: fish embryo toxicity test. https://doi.org/10.1787/9789264203709-en

  • Okada A, Sano K, Nagata K, Yasumasu S, Ohtsuka J, Yamamura A, Kubota K, Iuchi I, Tanokura M (2010) Crystal structure of zebrafish hatching enzyme 1 from the zebrafish Danio rerio. J Mol Biol 402:865–878

    CAS  Google Scholar 

  • Oliveira R, McDonough S, Ladewig JCL, Soares AMVM, Nogueira AJA, Domingues I (2013) Effects of oxytetracycline and amoxicillin on development and biomarkers activities of zebrafish (Danio rerio). Environ Toxicol Pharmacol 36(3):903–912

    CAS  Google Scholar 

  • Pamanji R, Bethu MS, Yashwanth B, Leelavathi S, Venkateswara Rao J (2015a) Developmental toxic effects of monocrotophos, an organophosphorous pesticide, on zebrafish (Danio rerio) embryos. Environ Sci Pollut Res 39:887–897. https://doi.org/10.1007/s11356-015-4120-8

    Article  CAS  Google Scholar 

  • Pamanji R, Yashwanth B, Bethu MS, Leelavathi S, Ravinder K, Rao JV (2015b) Toxicity effects of profenofos on embryonic and larval development of zebrafish (Danio rerio). Environ Toxicol Pharmacol 39:887–897

    CAS  Google Scholar 

  • Pandey RK, Singh RN, Singh S, Singh NN, Das VK (2009) Acute toxicity bioassay of dimethoate on freshwater air breathing catfish Heteropneustus fossilis (Bloch). J Environ Biol 30:437–440

    CAS  Google Scholar 

  • Pérez J, Domingues I, Monteiro M, Soares AMVM, Loureiro S (2013) Synergistic effects caused by atrazine and terbuthylazine on chlorpyrifos toxicity to early-life stages of the zebrafish Danio rerio. Environ Sci Pollut Res 20:4671–4680

    Google Scholar 

  • Perry S, Tzaneva V (2016) The sensing of respiratory gases in fish: mechanisms and signalling pathways. Respir Physiol Neurobiol 224:71–79

    CAS  Google Scholar 

  • Qiang L, Cheng J, Yi J, Rotchell J, Zhu X, Zhou J (2016) Environmental concentration of carbamazepine accelerates fish embryonic development and disturbs larvae behaviour. Ecotoxicol 25:1426–1437

    CAS  Google Scholar 

  • Ra**i A, Gopi RA, Bhuvana V (2015) Effect of pre-emergence and post-emergence herbicide on few biochemical parameters to freshwater fish labeo rohita. IJRSR 6(9):6422–6425

    Google Scholar 

  • Raldua D, Babin PJ (2009) Simple rapid zebrafish larva bioassay for assessing the potential of chemical pollutants and drugs to disrupt thyroid gland function. Environ Sci Technol 43(17):6844–6850

    CAS  Google Scholar 

  • Richendrfer H, Creton R (2015) Chlorpyrifos and malathion have opposite effects on behaviors and brain size that are not correlated to changes in AChE activity. Neurotoxicology 49:50–58. https://doi.org/10.1016/j.neuro.2015.05.002

    Article  CAS  Google Scholar 

  • Richendrfer H, Pelkowski SD, Colwill RM, Creton R (2012) On the edge: pharmacological evidence for anxiety-related behavior in zebrafish larvae. Behav Brain Res 228:99–106. https://doi.org/10.1016/j.bbr.2011.11.041

    Article  CAS  Google Scholar 

  • Sarikaya R, Selvi M (2005) Investigation of acute toxicity of (2,4- dichlorophenoxy) acetic acid (2,4-D) herbicide on larvae and adult Nile tilapia (Oreochromis niloticus L.). Environ Toxicol Pharmacol 20:264–268

    CAS  Google Scholar 

  • Sarikaya R, Yilmaz M (2003) Investigation of acute toxicity and the effect of 2,4-D (2,4-dichlorophenoxyacetic acid) herbicide on the behavior of the common carp (Cyprinus carpio L., 1758; Pisces, Cyprinidae). Chemosphere 52:195–201

    CAS  Google Scholar 

  • Schmidel AJ, Assmann KL, Werlang CC, Bertoncello KT, Francescon F, Rambo CL, Beltrame GM, Caleqari D, Batista CB, Blaser RE, Roman Júnior WA, Conterato GM, Piato AL, Zanatta L, Magro JD, Rosemberg DB (2014) Subchronic atrazine exposure changes defensive behaviour profile and disrupts brain acetylcholinesterase activity of zebrafish. Neurotoxicol Teratol 44:62–69

    CAS  Google Scholar 

  • Schnorr SJ, Steenbergen PJ, Richardson MK, Champagne DL (2012) Measuring thigmotaxis in larval zebrafish. Behav Brain Res 228:367–374

    CAS  Google Scholar 

  • Selderslaghs IWT, Hooyberghs J, Coen WD, Witters HE (2010) Locomotor activity in zebrafish embryos: a new method to assess developmental neurotoxicity. Neurotoxicol Teratol 32:460–471

    CAS  Google Scholar 

  • Sharma S, Coombs S, Patton P, Burt de Perera T (2009) The function of wall-following behaviors in the Mexican blind cavefish and a sighted relative, the Mexican tetra (Astyanax). J Comp Physiol A Sens Neural Behav Physiol 195:225–240

    Google Scholar 

  • Stevanovic M, Gasic S, Pipal M, Blahova L, Brkic D, Neskovic N, Hilscherova K (2017) Toxicity of clomazone and its formulations to zebrafish embryos (Danio rerio). Aquat Toxicol 188:54–63

    CAS  Google Scholar 

  • Stevens J, Breckenridge C (2001) Crop protection chemicals. In: Hayes WA (ed) Principles and methods of toxicology. Taylor & Francis, Philadelphia, pp 718–816

    Google Scholar 

  • Stevens JT, Sumner DD (1991) Herbicides. In: Hayes WJ Jr, Laws ER Jr (eds) Handbook of pesticide toxicology. Academic, New York, pp 7–12

    Google Scholar 

  • Strähle U, Scholz S, Geisler R, Greiner P, Hollert H, Rastegar S, Schumacher A, Selderslaghs I, Weiss C, Witters H, Braunbeck T (2011) Zebrafish embryos as an alternative to animal experiments-a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod Toxicol 33:128–132

    Google Scholar 

  • Tayeb W, Nakbi A, Trabelsi M, Attia N, Miled A, Hammami M (2010) Hepatotoxicity induced by sub-acute exposure of rats to 2,4-dichlorophenoxyacetic acid based herbicide “Désormone lourd”. J Hazard Mater 180:225–233

    CAS  Google Scholar 

  • Tayeb W, Chaieb I, Hammami M (2011) Environmental fate and effects of 2,4- dichlorophenoxyacetic herbicide. In: Piotrowsky KP (ed) Herbicides: Properties, Crop Protection and Environmental Hazards. Nova Sciences Publisher, Hauppauge, pp 161–187

    Google Scholar 

  • Tierney KB, Sekela MA, Cobbler CE, Xhabija B, Gledhill M, Ananvoranich S, Zielinski BS (2011) Evidence for behavioral preference toward environmental concentrations of urban-use herbicides in a model adult fish. Environ Toxicol Chem 30(9):2046–2054

    CAS  Google Scholar 

  • Ton C, Lin Y, Willett C (2006) Zebrafish as a model for developmental neurotoxicity testing. Birth Defects Res A Clin Mol Teratol 76:553–567

    CAS  Google Scholar 

  • U.S. Environmental Protection Agency (1988) Fact sheet number 192: 2- (2-methyl-4-chloro-phenoxy) propionic acid and its salts and esters. Office of Pesticides and Toxic Substances, Washington, DC, pp 7–10

    Google Scholar 

  • United States Environmental Protection Agency (2002) Technical fact sheet on 2,4-D. http://www.epa.gov/ogwdw/dwh/t-soc/24-d.html. Accessed 1 Oct 2012

  • Velki M, Di Paolo C, Nelles J, Seiler TB, Hollert H (2017) Diuron and diazinon alter the behavior of zebrafish embryos and larvae in the absence of acute toxicity. Chemosphere 180:65–76

    CAS  Google Scholar 

  • Walters J (1999) Environmental rate of 2,4-dichlorophenoxyacetic acid. Environmental monitoring and pest management. Department of Pesticide Regulation, Sacramento, pp 95814–93510

    Google Scholar 

  • Watson FL, Schmidt H, Turman ZK, Hole N, Garcia H, Gregg J, Tilghman J, Fradinger EA (2014) Organophosphate pesticides induce morphological abnormalities and decrease locomotor activity and heart rate in Danio rerio and Xenopus laevis. Environ Toxicol Chem 33:1337–1345

    CAS  Google Scholar 

  • Yen J, Donerly S, Levin ED, Linney EA (2011) Differential acetylcholinesterase inhibition of chlorpyrifos, diazinon and parathion in larval zebrafish. Neurotoxicol Teratol 33:735–741

    CAS  Google Scholar 

Download references

Funding

This work was supported by funds from the “Ministère de l’Enseignement Supérieur et de la Recherche Scientifique; UR13A6R08, Biochimie et Toxicologie Environnementale” and the Department of Biology, University of Aveiro Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Banni.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaaied, S., Oliveira, M., Domingues, I. et al. 2,4-Dichlorophenoxyacetic acid herbicide effects on zebrafish larvae: development, neurotransmission and behavior as sensitive endpoints. Environ Sci Pollut Res 27, 3686–3696 (2020). https://doi.org/10.1007/s11356-019-04488-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-04488-5

Keywords

Navigation