Log in

Impact of a static magnetic field on biodegradation of wastewater compounds and bacteria recombination

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The current study presents results concerning the effect of a static magnetic field (SMF) on synthetic wastewater biodegradation by activated sludge and on dehydrogenase activity of microorganisms of activated sludge. The highest process efficiency was obtained for a SMF of 0.0075 T among the tested magnetic flux density values of 0.005–0.14 T. Decrease in COD was 25% higher for the bioreactor exposed to SMF compared with control experiments. The positive effect of SMF 0.0075–0.0080 T was confirmed in experiments on the dehydrogenase activity of activated sludge. It was also shown that a SMF of 0.007 T increased p-nitroaniline removal from wastewater and influenced the recombination frequency in a streptomycin-resistant bacteria strain of Eschercihia coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Barzenji HA, Al-Jubouri R (2010) The effect of static magnetic field on some oral microorganisms (an in vitro study). Tikrit Med J 16:34–38

    Google Scholar 

  • Amara S, Douki T, Garrel C, Favier A, Ben Rhouma K, Sakly M, Abdelmelek H (2011) Effects of static magnetic field and cadmium on oxidative stress and DNA damage in rat cortex brain and hippocampus. Toxicol Ind Health 27(2):99–106

    Article  CAS  Google Scholar 

  • Bajpai I, Saha N, Basu B (2012) Moderate intensity static magnetic field has bactericidal effect on E coli and S epidermidis on sintered hydroxyapatite. J Biomed Mater Res B Appl Biomater 100(5):1206–1217

    Article  CAS  Google Scholar 

  • Bawin SM, Adey WR (1976) Sensitivity of calcium binding in cerebral tissue to weak environmental electric fields oscillating at low frequency. Proc Natl Acad Sci 73(6):1999–2003

    Article  CAS  Google Scholar 

  • Čech JS, Chudoba J, Grau P (1985) Determination of kinetic constants of activated sludge microorganisms. Wat Sci Technol 17(2–3):259–272

    Article  Google Scholar 

  • Chen H, Li X (2008) Effects of static magnetic field on synthesis of polyhydroxyalkanoates from different short-chain acids by activated sludge. Bioresour Technol 99(13):5538–5544

    Article  CAS  Google Scholar 

  • Cook ES, Smith MJ (1964) Increase of trypsic activity. In: Barnothy MF (ed) Biological effects of magnetic fields. Springer, Boston, pp. 246–254

  • Dini L, Abbro L (2005) Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron 36(3):195–217

    Article  Google Scholar 

  • Fijalkowski K, Nawrotek P, Struk M, Kordas M, Rakoczy R (2013) The effects of rotating magnetic field on growth rate cell metabolic activity and biofilm formation by Staphylococcus aureus and Escherichia coli. J Magn 18(3):289–296

    Article  Google Scholar 

  • Filipič J, Kraigher B, Tepuš B, Kokol V, Mandic-Mulec I (2012) Effects of low-density static magnetic fields on the growth and activities of wastewater bacteria Escherichia coli and Pseudomonas putida. Bioresour Technol 120:225–232

    Article  CAS  Google Scholar 

  • Germishev TM, Tsolova KN (1986) Effect of a constant magnetic field on the activity of certain respiratory enzymes in wheat roots. Fiziol Rast (Sofia) 12:63–69

    Google Scholar 

  • Gorczyńska E, Węgrzynowicz R (1986) Effect of chronic exposure to static magnetic field upon the serum glutamic pyruvic transaminase activity GPT and morphology of the cardiac muscle skeletal muscles kidney’s cerebellum and lung tissue in guinea pigs. J Hyg Epidemiol Microbiol Immunol 30:275–281

    Google Scholar 

  • Haghi M, Maghsoodi MJ, Janipor MB, Seyyedgholizadeh S (2012) Effect of static magnetic field on E. coli growth. Int J Adv Biotechnol Res 3(4):777–781

    Google Scholar 

  • Hunt RW, Zavalin A, Bhatnagar A, Chinnasamy S, Das KC (2009) Electromagnetic biostimulation of living cultures for biotechnology biofuel and bioenergy applications. Int J Mol Sci 10(10):4515–4558

    Article  CAS  Google Scholar 

  • Ikehata M, Koana T, Suzuki Y, Shimizu H, Nakagawa M (1999) Mutagenicity and co-mutagenicity of static magnetic fields detected by bacterial mutation assay. Mutat Res 427(2):147–156

    Article  CAS  Google Scholar 

  • Jung J, Sanij B, Godbole S, Sofer S (1993) Biodegradation of phenol: a comparative study with and without applying magnetic fields. J Chem Technol Biotechnol 56(1):73–76

    Article  CAS  Google Scholar 

  • Kamel FH, Saeed CH, Qader SS (2013) The effects of magnetic fields on some biological activities of Pseudomonas aeruginosa. Diyala J Med 5(1):29–35

    Google Scholar 

  • Klimiuk E, Lossov K, Bulińska M (1995) Reaction kinetics and modelling of biochemical reactors in wastewater treatment processes. ART Publishing Olsztyn (in Polish)

  • Kohno M, Yamazaki M, Kimura I, Wada M (2000) Effect of static magnetic fields on bacteria: Streptococcus mutans Staphylococcus aureus and Escherichia coli. Pathophysiology 7(2):143–148

    Article  CAS  Google Scholar 

  • Křiklavová L, Truhlář M, Škodová P, Lederer T, Jirků V (2014) Effects of a static magnetic field on phenol degradation effectiveness and Rhodococcus erythropolis growth and respiration in a fed-batch reactor. Bioresour Technol 167:510–513

    Article  CAS  Google Scholar 

  • Krzemieniewski M, Dębowski M, Janczukowicz W, Pesta J (2003) Effect of sludge conditioning by chemical methods with magnetic field application. Pol J Environ Stud 12(5):595–605

    CAS  Google Scholar 

  • Łebkowska M (1991) The influence of static magnetic fields on biodegradation of organic substances. Prace naukowe Inżynierii Sanitarnej i Wodnej (13). Oficyna Wydawnicza Politechniki Warszawskiej (in Polish)

  • Łebkowska M, Rutkowska-Narożniak A, Pajor E, Pochanke Z (2011) Effect of a static magnetic field on formaldehyde biodegradation in wastewater by activated sludge. Bioresour Technol 102:8777–8782

    Article  CAS  Google Scholar 

  • Łebkowska M, Rutkowska-Narożniak A, Pajor E (2013) Effect of a static magnetic field of 7 mT on formaldehyde biodegradation in industrial wastewater from urea–formaldehyde resin production by activated sludge. Bioresour Technol 132:78–83

    Article  CAS  Google Scholar 

  • Niu C, Geng J, Ren H, Ding L, Xu K, Liang W (2013) The strengthening effect of a static magnetic field on activated sludge activity at low temperature. Bioresour Technol 150:156–162

    Article  CAS  Google Scholar 

  • Nossol B, Buse G, Silny J (1993) Influence of weak static and 50 Hz magnetic fields on the redox activity of cytochrome-C oxidase. Bioelectromagnetics 14(4):361–372

    Article  CAS  Google Scholar 

  • Okuda T, Kimiko N, Yosuke E, Shigekazu N, Takeo I, Kanji I (1998) The effect static magnetic fields and X-rays on instability of microsatellite repetitive sequences. J Radiat Res 39:279–287

    Article  CAS  Google Scholar 

  • Ozga-Zielińska M, Nawalany M (1999) Identification and verification of integral model of a catchment. Bibl Wiad IMUZ 61:43–54 (in Polish)

    Google Scholar 

  • Potenza L, Ubaldi L, De Sanctis R, De Bellis R, Cucchiarini L, Dachà M (2004) Effects of a static magnetic field on cell growth and gene expression in Escherichia coli. Mutat Res 561:53–62

    Article  CAS  Google Scholar 

  • Rutkowska-Narożniak A (1997) An application of static magnetic field to intensify the pollutions biodegradation in wastewater. Ph.D. thesis, Oficyna Wydawnicza Politechniki Warszawskiej (in Polish)

  • Skowron M (2009) Biostimulation of camelina seeds with a strong magnetic field. Prace Instytutu Elektrotechniki 56(243):149–170 (in Polish)

    Google Scholar 

  • Snoussi S, El May A, Coquet L, Chan P, Jouenne T, Landoulsi A, Emmanuelle DÉ (2012) Adaptation of Salmonella enterica Hadar under static magnetic field: effects on outer membrane protein pattern. Proteome Sci 10(1):6

    Article  CAS  Google Scholar 

  • Swerdlow AJ (2008) Static magnetic fields. Report of the independent advisory group on non-ionising radiation. Health Protection Agency

  • Tagourti J, El May A, Aloui A, Chatti A, Aissa RB, Landoulsi A (2010) Static magnetic field increases the sensitivity of Salmonella to gentamicin. Ann Microbiol 60(3):519–522

    Article  CAS  Google Scholar 

  • Teichmann EM, Hengstler JG, Schreiber WG, Akbari W, Georgi H, Hehn M, Schiffer I, Oesch F, Spiess HW, Thelen M (2000) Research on possible mutagene potential of magnetic fields. In: RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren. Georg Thieme Verlag,·Stuttgart 172 (11) pp. 934–939 (in German)

  • Tomska A, Wolny L (2008) Enhancement of biological wastewater treatment by magnetic field exposure. Desalination 222:368–373

    Article  CAS  Google Scholar 

  • Varga A (1976) Biosynthesis of proteins by microorganisms exposed to electromagnetic fields. VEB Georg Thierne, Leipzig (in German)

    Google Scholar 

  • Wiley RH, Cook SL, Crawford TH, Fairless BJ, Liu H, Weber EC (1964) Biological effects of magnetic fields. III. Plenum Press

  • Yamaguchi H, Hosokawa K, Soda A, Miyamoto H, Kinouchi Y (1993) Effects of seven months’ exposure to a static 0.2 T magnetic field on growth and glycolytic activity of human gingival fibroblasts. Biochim Biophys Acta 1156:302–306

    Article  CAS  Google Scholar 

  • Zhang QM, Tokiwa M, Doi T, Nakahara T, Chang PW, Nakamura N, Hori M, Miyakoshi J, Yonei S (2003) Strong static magnetic field and the induction of mutations through elevated production of reactive oxygen species in Escherichia coli soxR. Int J Radiat Biol 79(4):281–286

    Article  CAS  Google Scholar 

  • Zhu S-C, Xu Z-L, Meng H-J, Zhou J, Chen Z (2012) Effect of magnetic field on the accumulation of polyhydroxyalkanoates (PHAs) by microorganism in activated sludge. Bioprocess Biosyst Eng 35:985–991

    Article  CAS  Google Scholar 

  • Zieliński M, Rusanowska P, Dębowski M, Hajduk A (2018) Influence of static magnetic field on sludge properties. Sci Total Environ 625:738–742

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Łebkowska.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Łebkowska, M., Rutkowska-Narożniak, A., Pajor, E. et al. Impact of a static magnetic field on biodegradation of wastewater compounds and bacteria recombination. Environ Sci Pollut Res 25, 22571–22583 (2018). https://doi.org/10.1007/s11356-018-1943-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1943-0

Keywords

Navigation