Log in

High efficacy of (Z)-γ-bisabolene from the essential oil of Galinsoga parviflora (Asteraceae) as larvicide and oviposition deterrent against six mosquito vectors

  • Plant-borne compounds and nanoparticles: challenges for medicine, parasitology and entomology
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The eco-friendly management of mosquitoes with novel and effective larvicides and oviposition deterrents is a crucial challenge to prevent outbreaks of mosquito-borne diseases. However, most of the herbal formulations tested in these years showed LC50 values higher of 40 ppm, and significant oviposition deterrent activity only when tested at relatively higher doses (> 50 μg/ml). Herein, we studied the chemical composition of the Galinsoga parviflora essential oil (EO). This plant is an annual herb native to South America naturalized all over the world. We tested the EO larvicidal and oviposition deterrent action on 6 mosquito species. Totally 37 compounds were identified in the EO of G. parviflora by GC and GC-MS analyses. The major constituent was (Z)-γ-bisabolene (38.9%). The G. parviflora EO and (Z)-γ-bisabolene showed acute toxicity on An. stephensi (LC50 = 31.04 and 2.04 μg/ml, respectively), Ae. aegypti (LC50 = 34.22 and 2.26 μg/ml, respectively), Cx. quinquefasciatus (LC50 = 37.10 and 2.47 μg/ml, respectively), An. subpictus (LC50 = 40.97 and 4.09 μg/ml, respectively), Ae. albopictus (LC50 = 45.55 and 4.50 μg/ml, respectively) and Cx. tritaeniorhynchus (LC50 = 49.56 and 4.87 μg/ml, respectively) larvae. Furthermore, the oviposition deterrent potential of the G. parviflora EO and (Z)-γ-bisabolene was studied on six mosquito vectors, showing that 25 μg/ml of (Z)-γ-bisabolene led to an Oviposition Activity Index lower of − 0.79 in all tested mosquito vectors. Overall, all larvicidal LC50 values estimated for (Z)-γ-bisabolene were lower than 5 μg/ml. This result far encompasses current evidences of toxicity reported for the large majority of botanical products currently tested against mosquito young instars, allowing us to propose this compound as an highly effective mosquito larvicide and oviposition deterrent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams RP (2007) 4th Ed. Carol stream, Illinois: allured publishing corporation; identification of essential oil components by gas chromatography/mass spectroscopy

  • Ali A, Tabanca N, Demirci B, Blythe EK, Baser KHC, Khan IA (2015) Chemical composition and biological activity of essential oils from four Nepeta species and hybrids against Aedes aegypti (L.) (Diptera: Culicidae). Rec Nat Prod 10:137–147

    Google Scholar 

  • Amer A, Mehlhorn H (2006a) Repellency effect of forty-one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol Res 99: 478–490.

    Article  Google Scholar 

  • Amer A, Mehlhorn H (2006b) The sensilla of Aedes and Anopheles mosquitoes and their importance in repellency. Parasitol Res 99: 491–499.

    Article  Google Scholar 

  • Amer A, Mehlhorn H (2006c) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472.

    Article  Google Scholar 

  • Amer A, Mehlhorn H (2006d) Persistency of larvicidal effects of plant oil extracts under different storage conditions. Parasitol Res 99:473–477.

    Article  Google Scholar 

  • Atiko R, Kwaji A, Yoriyo KP, Onocha PA (2016) Chemical composition and larvicidal activity of Hyptis spicigera volatile oils against mosquito larvae: Anopheles gambiae and Culex quinquefasciatus say. Int J Sci Eng Res 7(7):888–891

    Google Scholar 

  • Bazylko A, Borzym J, Parzonko A (2015) Determination of in vitro antioxidant and UV-protecting activity of aqueous and ethanolic extracts from Galinsoga parviflora and Galinsoga quadriradiata herb. J Photo Photobiol B: Biol 149:189–195

    Article  CAS  Google Scholar 

  • Bazylko A, Stolarczyk M, Derwinska M, Anna Karolina K (2012) Determination of antioxidant activity of extracts and fractions obtained from Galinsoga parviflora and Galinsoga quadriradiata, and a qualitative study of the most active fractions using TLC and HPLC methods. Nat Prod Res 26(17):1584–1593. https://doi.org/10.1080/14786419.2011.582469

    Article  CAS  Google Scholar 

  • Benelli G (2015a) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114(8):2801–2805. https://doi.org/10.1007/s00436-015-4586-9

    Article  Google Scholar 

  • Benelli G (2015b) Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol Res 114(9):3201–3212. https://doi.org/10.1007/s00436-015-4656-z

    Article  Google Scholar 

  • Benelli G (2016a) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 115(1):23–34. https://doi.org/10.1007/s00436-015-4800-9

    Article  Google Scholar 

  • Benelli G (2016b) Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review. Enzym Microb Technol 95:58–68. https://doi.org/10.1016/j.enzmictec.2016.08.022

    Article  CAS  Google Scholar 

  • Benelli G (2017) Commentary: data analysis in bionanoscience–issues to watch for. J Clust Sci 28(1):11–14. https://doi.org/10.1007/s10876-016-1143-3

    Article  CAS  Google Scholar 

  • Benelli G (2018) Gold nanoparticles – against parasites and insect vectors. Acta Trop 178:73-80, https://doi.org/10.1016/j.actatropica.2017.10.021.

    Article  CAS  Google Scholar 

  • Benelli G, Beier J (2017) Current vector control challenges in the fight against malaria. Acta Trop 174:91–96, https://doi.org/10.1016/j.actatropica.2017.06.028.

    Article  Google Scholar 

  • Benelli G, Govindarajan M (2017) Green-synthesized mosquito oviposition attractants and ovicides: towards a nanoparticle-based “lure and kill” approach? J Clust Sci 28(1):287–308. https://doi.org/10.1007/s10876-016-1088-6

    Article  CAS  Google Scholar 

  • Benelli G, Mehlhorn H (2016) Declining malaria, rising dengue and Zika virus: insights for mosquito vector control. Parasitol Res 115(5):1747–1754. https://doi.org/10.1007/s00436-016-4971-z

    Article  Google Scholar 

  • Benelli G, Pavela R (2018) Repellence of essential oils and selected compounds against ticks – a systematic review. Acta Trop 179:47–54. https://doi.org/10.1016/j.actatropica.2017.12.025

  • Benelli G, Romano D (2017) Mosquito vectors of Zika virus. Entomol Gen 36(4):309–318. https://doi.org/10.1127/entomologia/2017/0496.

    Article  Google Scholar 

  • Benelli G, Lo Iacono A, Canale A, Mehlhorn H (2016a) Mosquito vectors and the spread of cancer: an overlooked connection? Parasitol Res 115(6):2131–2137. https://doi.org/10.1007/s00436-016-5037-y

    Article  Google Scholar 

  • Benelli G, Pavela R, Canale A, Mehlhorn H (2016b) Tick repellents and acaricides of botanical origin: a green roadmap to control tick-borne diseases? Parasitol Res 115(7):2545–2560. https://doi.org/10.1007/s00436-016-5095-1

    Article  Google Scholar 

  • Benelli G, Maggi F, Petrelli R, Canale A, Nicoletti M, Rakotosaona R, Rasoanaivo P (2017a) Not ordinary antimalarial drugs: Madagascar plant decoctions potentiating the chloroquine action against Plasmodium parasites. Ind Crop Prod 103:19–38. https://doi.org/10.1016/j.indcrop.2017.03.032

    Article  CAS  Google Scholar 

  • Benelli G, Rajeswary M, Vijayan P, Senthilmurugan S, Alharbi NS, Shine K, Khaled JM, Govindarajan M (2017b) Boswellia ovalifoliolata (Burseraceae) essential oil as an eco-friendly larvicide? Toxicity against six mosquito vectors of public health importance, non-target mosquito fishes, backswimmers, and water bugs. Environ Sci Pollut Res doi. https://doi.org/10.1007/s11356-017-8820-0

  • Benelli G, Govindarajan M, Rajeswary M, Senthilmurugan S, Vijayan P, Alharbi NS, Shine K, Khaled JM (2017c) Larvicidal activity of Blumea eriantha essential oil and its components against six mosquito species, including Zika virus vectors: the promising potential of (4E,6Z)-allo-ocimene, carvotanacetone and dodecyl acetate. Parasitol Res 116(4):1175–1188. https://doi.org/10.1007/s00436-017-5395-0

    Article  Google Scholar 

  • Benelli G, Rajeswary M, Govindarajan M (2017d) Towards green oviposition deterrents? Effectiveness of Syzygium lanceolatum (Myrtaceae) essential oil against six mosquito vectors and impact on four aquatic biological control agents. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-016-8146-3

  • Benelli G, Pavela R, Iannarelli R, Petrelli R, Cappellacci L, Cianfaglione K, Afshar FH, Nicoletti M, Canale A, Maggi F (2017e) Synergized mixtures of Apiaceae EOs and related plant-borne compounds: larvicidal effectiveness on the filariasis vector Culex quinquefasciatus say. Ind Crop Prod 96:186–195. https://doi.org/10.1016/j.indcrop.2016.11.059

    Article  CAS  Google Scholar 

  • Boussaada O, Kamel MBH, Ammar S, Haouas D, Mighri Z, Helal AN (2008) Insecticidal activity of some Asteraceae plant extracts against Tribolium confusum. Bull Insectol 61:283–289

    Google Scholar 

  • Boulos L (2002) Flora of Egypt, Vol. III. Al-Hadara Publishing, Cairo, pp 233–234

    Google Scholar 

  • Chen XB, Liu XC, Zhou L, Liu ZL (2013) Essential oil composition and larvicidal activity of Clinopodium gracile (Benth.) Matsum (Labiatae) aerial parts against the Aedes albopictus mosquito. Trop J Pharm Res 12:799–804

    Google Scholar 

  • Cheng SS, Chang HT, Lin CY, Chen PS, Huang CG, Chen WJ, Chang ST (2009c) Insecticidal activities of leaf and twig essential oils from Clausena excavata against Aedes aegypti and Aedes albopictus larvae. Pest Manag Sci 65(3):339–343. https://doi.org/10.1002/ps.1693

    Article  CAS  Google Scholar 

  • Cheng SS, Chua MT, Chang EH, Huang CG, Chen WJ, Chang ST (2009b) Variations in insecticidal activity and chemical compositions of leaf essential oils from Cryptomeria japonica at different ages. Bioresour Technol 100(1):465–470. https://doi.org/10.1016/j.biortech.2007.11.060

    Article  CAS  Google Scholar 

  • Cheng SS, Liu JY, Huang CG, Hsui YR, Chen WJ, Chang ST (2009a) Insecticidal activities of leaf essential oils from Cinnamomum osmophloeum against three mosquito species. Bioresour Technol 100(1):457–464. https://doi.org/10.1016/j.biortech.2008.02.030

    Article  CAS  Google Scholar 

  • Cheng SS, Liu JY, Tsai KH, Chen WJ, Chang ST (2004) Chemical composition and mosquito larvicidal activity of essential oils from leaves of different Cinnamomum osmophloeum provenances. J Agric Food Chem 52(14):4395–4400. https://doi.org/10.1021/jf0497152

    Article  CAS  Google Scholar 

  • Chericoni S, Flamini G, Campeol E, Cioni PL, Morelli I (2004) GC-MS analysis of the essential oil from the aerial parts of Artemisia verlotiorum: variability during the year. Biochem Sys Ecol 32: 423–429

  • de Souza Tavares W, Cruz I, Petacci F, de Assis Junior SL, de Sousa Freitas S, Zanuncio JC, Serrao JE (2009) Potential use of Asteraceae extracts to control Spodoptera frugiperda (Lepidoptera: Noctuidae) and selectivity to their parasitoids Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) and Telenomus remus (Hymenoptera: Scelionidae). Ind Crop Prod 30(3):384–388. https://doi.org/10.1016/j.indcrop.2009.07.007

    Article  Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52(1):81–106. https://doi.org/10.1146/annurev.ento.52.110405.091440

    Article  CAS  Google Scholar 

  • Dharmagadda VSS, Naik SN, Mittal PK, Vasudevan P (2005) Larvicidal activity of Tagetes patula essential oil against three mosquito species. Bioresour Technol 96(11):1235–1240. https://doi.org/10.1016/j.biortech.2004.10.020

    Article  CAS  Google Scholar 

  • Do Nascimento JC, David JM, Barbosa LCA, De Paula VF, Demuner AJ, David JP, Conserva LM, Ferreira JRJC, Guimaraes EF (2013) Larvicidal activities and chemical composition of essential oils from Piper klotzschianum (Kunth) C. DC. (Piperaceae). Pest Manag Sci 69(11):1267–1271. https://doi.org/10.1002/ps.3495

    Google Scholar 

  • Dudek MK, Dudkowski L, Bazylko A, Kazmierski S, Kiss AK (2016) Caffeic acid derivatives isolated from the aerial parts of Galinsoga parviflora and their effect on inhibiting oxidative burst in human neutrophils. Phytochem Lett 16:303–310. https://doi.org/10.1016/j.phytol.2016.05.007

    Article  CAS  Google Scholar 

  • Euro+Med (2006-) Euro+Med PlantBase - the information resource for Euro-Mediterranean plant diversity. Published on the Internet http://ww2.bgbm.org/EuroPlusMed/ [accessed 10 April 2017]

  • Ferheen S, Ur-Rehman A, Afza N, Malik A, Iqbal L, Rasool MA, Ali MI, Tareen RB (2009) Galinsosides a and B, bioactive flavanone glucosides from Galinsoga parviflora. J Enzyme Inhib Med Chem 24(5):1128–1132. https://doi.org/10.1080/14756360802667688

    Article  CAS  Google Scholar 

  • Ferreira PE, Culleton R, Gil JP, Meshnick SR (2013) Artemisinin resistance in Plasmodium falciparum: what is it really? Tr Parasitol 29(7):318–320. https://doi.org/10.1016/j.pt.2013.05.002

    Article  CAS  Google Scholar 

  • Finney DJ (1971) Probit analysis. Cambridge University Press, London, pp 68–72

    Google Scholar 

  • Gairola S, Sharma J, Bedi YS (2014) A cross-cultural analysis of Jammu, Kashmir and Ladakh (India) medicinal plant use. J Ethnopharmacol 155(2):925–986. https://doi.org/10.1016/j.jep.2014.06.029

    Article  Google Scholar 

  • González-Coloma A, Guadaño A, Tonn CE, Sosa ME (2005) Antifeedant/insecticidal terpenes from Asteraceae and Labiatae species native to Argentinean semi-arid lands. Z Naturforsch 60c:855–861

    Google Scholar 

  • Govindarajan M, Benelli G (2016a) Eco-friendly larvicides from Indian plants: effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors. Ecotox Environ Saf 133:395–402. https://doi.org/10.1016/j.ecoenv.2016.07.035

    Article  CAS  Google Scholar 

  • Govindarajan M, Benelli G (2016b) α-humulene and β-elemene from Syzygium zeylanicum (Myrtaceae) essential oil: highly effective and eco-friendly larvicides against Anopheles subpictus, Aedes albopictus and Culex tritaeniorhynchus (Diptera: Culicidae). Parasitol Res 115(7):2771–2778. https://doi.org/10.1007/s00436-016-5025-2

    Article  Google Scholar 

  • Govindarajan M, Benelli G (2016c) Artemisia absinthium-borne compounds as novel larvicides: effectiveness against six mosquito vectors and acute toxicity on non-target aquatic organisms. Parasitol Res 115(12):4649–4661. https://doi.org/10.1007/s00436-016-5257-1

    Article  Google Scholar 

  • Govindarajan M, Shine K, Naiyf S, Alharbi BG (2016) Acute toxicity and repellent activity of the Origanum scabrum Boiss. & Heldr. (Lamiaceae) essential oil against four mosquito vectors of public health importance and its biosafety on non-target aquatic organisms. Environ Sci Pollut Res 23(22):23228–23238. https://doi.org/10.1007/s11356-016-7568-2

    Article  CAS  Google Scholar 

  • Govindarajan M, Rajeswary M, Senthilmurugan S, Vijayan P, Alharbi NS, Shine K, Khaled JM, Benelli G (2017) Curzerene, trans-β-elemenone, and γ-elemene as effective larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus: toxicity on non-target aquatic predators. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-8822-y

  • Haider SZ, Mohan M, Pandey AK, Singh P (2017) Use of Tanacetum tomentosum and Ta. dolichophyllum essential oils as botanical repellents and insecticidal agents against storage pest Tribolium castaneum (Coleoptera: Tenebrionidae). Entomol Res 47(5):318–327. https://doi.org/10.1111/1748-5967.12228

    Article  CAS  Google Scholar 

  • Ibrahim MA, Stewart-Jones A, Pulkkinen J, Poppy GM, Holopainen JK (2008) The influence of different nutrient levels on insect-induced plant volatiles in Bt and conventional oilseed rape plants. Plant Biol 10(1):97–107. https://doi.org/10.1111/j.1438-8677.2007.00013.x

    Article  CAS  Google Scholar 

  • Isman B (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51(1):45–66. https://doi.org/10.1146/annurev.ento.51.110104.151146

    Article  CAS  Google Scholar 

  • Isman MB (2008) Botanical insecticides: for richer, for poorer. Pest Manag Sci 64(1):8–11. https://doi.org/10.1002/ps.1470

    Article  CAS  Google Scholar 

  • Isman MB (2015) A renaissance for botanical insecticides? Pest Manag Sci 71(12):1587–1590. https://doi.org/10.1002/ps.4088

    Article  CAS  Google Scholar 

  • Jain N, Srivastava SK, Aggarwal LKK, Ramesh S, Kumar S (2001) Essential oil composition of Zanthoxylum alatum seeds from northern India. Flavour Frag J 16(6):408–410. https://doi.org/10.1002/ffj.1024

    Article  CAS  Google Scholar 

  • Kiran SR, Bhavani K, Devi PS, Rao BRR, Reddy KJ (2006) Composition and larvicidal activity of leaf and stem essential oils of Chloroxylon swietenia DC against Aedes aegypti and Anopheles stephensi. Bioresour Technol 97(18):2481–2484. https://doi.org/10.1016/j.biortech.2005.10.003

    Article  CAS  Google Scholar 

  • Kramer WL, Mulla MS (1979) Oviposition attractants and repellents of mosquitoes: oviposition responses of Culex mosquitoes to organic infusions. Environ Entomol 8(6):1111–1114. https://doi.org/10.1093/ee/8.6.1111

    Article  Google Scholar 

  • Lawal OA, Ogunwande IA, Salvador AF, Sanni AA, Opoku AR (2014) Pachira glabra Pasq. essential oil: chemical constituents, antimicrobial and insecticidal activities. J Oleo Sci 63(6):629–635. https://doi.org/10.5650/jos.ess13179

    Article  CAS  Google Scholar 

  • Lee HS (2006) Mosquito larvicidal activity of aromatic medicinal plant oils against Aedes aegypti and Culex pipiens pallens. J Am Mosq Control Assoc 22(2):292–295.

  • Liang Z, Ying JT (2011) Chemical composition and larvicidal effects of essential oil of Blumea martiniana against Anopheles anthropophagus. Asian Pac J Trop Med:371–374

  • Liu XC, Dong HW, Zhou L, Du SS, Liu ZL (2012) Essential oil composition and larvicidal activity of Toddalia asiatica roots against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol Res 2012 112:1197–1203

    Article  Google Scholar 

  • Liu XC, Liu Q, Chen XB, Zhou L, Liu ZL (2015) Larvicidal activity of the essential oil from Tetradium glabrifolium fruits and its constituents against Aedes albopictus. Pest Manag Sci 71(11):1582–1586. https://doi.org/10.1002/ps.3964

    Article  CAS  Google Scholar 

  • Liu XC, Liu QR, Zhou L, Liu QR, Liu ZL (2014) Chemical composition of Zanthoxylum avicennae essential oil and its larvicidal activity on Aedes albopictus Skuse. Trop J Pharm Res 2014 13:399–404

    CAS  Google Scholar 

  • Liu XC, Liu ZL (2014) Evaluation of larvicidal activity of the essential oil of Ageratum conyzoides L. aerial parts and its major constituents against Aedes albopictus. J Entomol Zool Stud 2(4):345–350

    Google Scholar 

  • Lomonaco D, Santiago GMP, Ferreira YS, Arriaga AMC, Mazzetto SE, Meleç G, Vasapollo G (2009) Study of technical CNSL and its main components as new green larvicides. Green Chem 11(1):31–33. https://doi.org/10.1039/B811504D

    Article  CAS  Google Scholar 

  • Lucia A, Audino PG, Seccacini E, Licastro S, Zerba E, Masuh H (2007) Larvicidal effect of Eucalyptus grandis essential oil and turpentine and their major components on Aedes aegypti larvae. J Am Mosq Control Assoc 23(3):299–303.

  • Mancini E, De Martino L, Marandino A, Scognamiglio MR, Feo D (2011) Chemical composition and possible in vitro phytotoxic activity of Helichrsyum italicum (Roth) Don ssp. italicum. Molecules 16(12):7725–7735. https://doi.org/10.3390/molecules16097725

    Article  CAS  Google Scholar 

  • Marques MMM, Morais SM, Vieira ÍGP, Vieira MGS, Silva ARA, Almeida RR, Guedes MIF (2011) Larvicidal a activity of Tagetes erecta against Aedes aegypti. J Am Mosq Control Assoc 27(2):156–158. https://doi.org/10.2987/10-6056.1

    Article  CAS  Google Scholar 

  • Mehlhorn H (ed) (2015) Encyclopedia of parasitology, 4th edn. Springer, New 893, York

  • Miyazawa M, Nakamura Y, Ishikawa Y (2000) Insecticidal sesquiterpene from Alpinia oxyphylla against Drosophila melanogaster. J Agric Food Chem 48(8):3639–3641. https://doi.org/10.1021/jf000325z

    Article  CAS  Google Scholar 

  • Morshedloo MR, Craker LE, Salami A, Nazeri V, Sang H, Maggi F (2017) Effect of prolonged water stress on essential oil content, compositions and gene expression patterns of mono- and sesquiterpene synthesis in two oregano (Origanum vulgare L.) subspecies. Plant Physiol Biochem 111:119–128. https://doi.org/10.1016/j.plaphy.2016.11.023

    Article  CAS  Google Scholar 

  • Mossa JS, Muhammad I, El-Feraly FS, Huffor CD, McPhail DR, McPhail AT (1992) Bisabolene and guaiane sesuiterpenes from Pulicaria glutinosa. Phytochemistry 31(2):575–578. https://doi.org/10.1016/0031-9422(92)90041-N

    Article  CAS  Google Scholar 

  • Mostafa I, El-Aziz EA, Hafez S, El-Shazly A (2013) Chemical constituents and biological activities of Galinsoga parviflora Cav. (Asteraceae) from Egypt. Z Naturforsch 68:285–292. https://doi.org/10.5560/ZNC.2013.68c0285

    Article  CAS  Google Scholar 

  • Namukobe J, Kasenene JM, Kiremire BT, Byamukama R, Kamatenesi-Mugisha M, Krief S, Dumontet V, Kabasa JD (2011) Traditional plants used for medicinal purposes by local communities around the northern sector of Kibale National Park, Uganda. J Ethnopharmacol 136(1):236–245. https://doi.org/10.1016/j.jep.2011.04.044

    Article  Google Scholar 

  • Naqqash MN, Gökçe A, Bakhsh A, Salim M (2016) Insecticide resistance and its molecular basis in urban insect pests. Parasitol Res 115(4):1363–1373. https://doi.org/10.1007/s00436-015-4898-9

    Article  Google Scholar 

  • Ochwang’i DO, Kimwele CN, Oduma JA, Gathumbi PK, Mbaria JM, Kiama SG (2014) Medicinal plants used in treatment and management of cancer in Kakamega County, Kenya. J Ethnopharmacol 151(3):1040–1055. https://doi.org/10.1016/j.jep.2013.11.051

    Article  Google Scholar 

  • Omena MC, Navarro DMAF, De Paula JE, Luna JS, De Lima MRF, SantAna AEG (2007) Larvicidal activities against Aedes aegypti of some Brazilian medicinal plants. Bioresour Technol 98(13):2549–2556. https://doi.org/10.1016/j.biortech.2006.09.040

    Article  Google Scholar 

  • Pan ZH, Zhao L, Huang R, Ma GY, Li ZQ (2007), Terpenes and sterols from Galinsoga parviflora. J Yunnan Univ Nat Sci 29: 613–616

  • Pavela R (2008) Larvicidal activities of some euro-Asiatic plants against Culex quinquefasciatus say (Diptera: Culicidae). J Biopest 1(1):81–85

    Google Scholar 

  • Pavela R (2015) Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crop Prod 76:174–187. https://doi.org/10.1016/j.indcrop.2015.06.050

    Article  CAS  Google Scholar 

  • Pavela R, Benelli G (2016a) Ethnobotanical knowledge on botanical repellents employed in the African region against mosquito vectors—a review. Exp Parasitol 167:103–108. https://doi.org/10.1016/j.exppara.2016.05.010

    Article  Google Scholar 

  • Pavela R, Benelli G (2016b) Essential oils as eco-friendly biopesticides? Challenges and constraints. Tr Plant Sci 21:1000–1007, 12, DOI: https://doi.org/10.1016/j.tplants.2016.10.005

  • Pavela R, Vrchotova N, Triska J (2009) Mosquitocidal activities of thyme oils (Thymus vulgaris L.) against Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 105(5):1365–1370. https://doi.org/10.1007/s00436-009-1571-1

    Article  Google Scholar 

  • Pavela R, Canale A, Mehlhorn H, Benelli G (2016) Application of ethnobotanical repellents and acaricides in prevention, control and management of livestock ticks: a review. Res Vet Sci 109:1–9. https://doi.org/10.1016/j.rvsc.2016.09.001

    Article  Google Scholar 

  • Picot S, Olliaro P, De Monbrison F, Bienvenu AL, Price RN, Ringwald P (2009) A systematic review and meta-analysis of evidence for correlation between molecular markers of parasite resistance and treatment outcome in falciparum malaria. Malar J 8(1):89. https://doi.org/10.1186/1475-2875-8-89

    Article  Google Scholar 

  • Pignatti S (1982) Flora d’Italia. Edagricole, Bologna, Vol. III, p 63

  • Pino JA, Gaviria M, Quevedo-Vega J, García-Lesmes L, Quijano-Celis CE (2010) Essential oil of Galinsoga parviflora leaves from Colombia. Nat Prod Comm 5:1831–1832

    CAS  Google Scholar 

  • Raal A, Orav A, Arak E (2012) Essential oil composition of Foeniculum vulgare Mill. fruits from pharmacies in different countries. Nat Prod Res 26(13):1173–1178. https://doi.org/10.1080/14786419.2010.535154

    Article  CAS  Google Scholar 

  • Rawani A, Ghosh A, Laskar S, Chandra G (2014) Glucosinolate from leaf of Solanum nigrum L. (Solanaceae) as a new mosquito larvicide. Parasitol Res 113(12):4423–4430. https://doi.org/10.1007/s00436-014-4120-5

    Article  Google Scholar 

  • Ro D-K, Ehlting J, Keeling CI, Lin R, Mattheus N, Bohlmann J (2006) Microarray expression proWling and functional characterization of AtTPS genes: Duplicated Arabidopsis thaliana sesquiterpene synthase genes At4g13280 and At4g13300 encode root-speciWc and wound-inducible (Z)-γ-bisabolene synthases. Arch Biochem Biophys 448:104–116

  • Ruiz C, Cachay M, Domínguez M, Velásquez C, Espinoza G, Ventosilla P, Rojas R (2011) Chemical composition, antioxidant and mosquito larvicidal activities of essential oils from Tagetes filifolia, Tagetes minuta and Tagetes elliptica from Perú. Planta Med 77:PE30

    Article  Google Scholar 

  • Sakthivadivel M, Daniel T (2008) Evaluation of certain insecticidal plants for the control of vector mosquitoes viz., Culex quinquefasciatus, Anopheles stephensi and Aedes aegypti. Appl Entomol Zool 43(1):57–63. https://doi.org/10.1303/aez.2008.57

    Article  Google Scholar 

  • Schmidt C, Fronza M, Goettert M, Geller F, Luik S, Flores EMM, Bittencourt CF, Zanetti GD, Heinzmann BM, Laufer S, Merfort I (2009) Biological studies on Brazilian plants used in wound healing. J Ethnopharmacol 122(3):523–532. https://doi.org/10.1016/j.jep.2009.01.022

    Article  CAS  Google Scholar 

  • Sefidkon F, Jamzad Z, Mirza M (2004) Chemical variation in the essential oil of Satureja sahendica from Iran. Food Chem 88(3):325–328. https://doi.org/10.1016/j.foodchem.2003.12.044

    Article  CAS  Google Scholar 

  • Senthilkumar A, Kannathasan K, Venkatesalu V (2008) Chemical constituents and larvicidal property of the essential oil of Blumea mollis (D. Don) Merr. against Culex quinquefasciatus. Parasitol Res 103(4):959–962. https://doi.org/10.1007/s00436-008-1085-2

    Article  Google Scholar 

  • Shaalan EA, Canyon D, Younes MW, Abdel-Wahab H, Mansour AH (2005) A review of botanical phytochemicals with mosquitocidal potential. Environ Int 31(8):1149–1166. https://doi.org/10.1016/j.envint.2005.03.003

    Article  CAS  Google Scholar 

  • Sivakumar R, Jebanesan A, Govindarajan M, Rajasekar P (2011) Oviposition attractancy of dodecanoic, hexadecanoic and tetradecanoic acids against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Eur Rev Med Pharmacol Sci 15(10):1172–1175

    CAS  Google Scholar 

  • Sulaiman S, Abang Kamarudin DSF, Othman H (2008) Evaluation of bifenthrin and Acorus calamus Linn. extract against Aedes aegypti L. and Aedes albopictus (Skuse). J Arthropod-Borne Dis 2:7–11. 25

    Google Scholar 

  • Tariq S, Ferheen S, Moazzam M, Jabbar A, Riaz N, Saleem M, Afza N, Malik A, Tareen RB (2008) Phytochemical studies on Galinsoga parviflora. J Chem Soc Pak 30:762–765

    CAS  Google Scholar 

  • Tene V, Malagón O, Finzi PV, Vidari G, Armijos C, Zaragoza T (2007) An ethnobotanical survey of medicinal plants used in Loja and Zamora-Chinchipe, Ecuador. J Ethnopharmacol 111(1):63–81. https://doi.org/10.1016/j.jep.2006.10.032

    Article  Google Scholar 

  • Tiwary M, Naik SN, Dhananjay Kumar T, Mittal PK, Yadav S (2007) Chemical composition and larvicidal activities of the essential oil of Zanthoxylum armatum DC (Rutaceae) against three mosquito vectors. J Vect Borne Dis 44:198–204

    CAS  Google Scholar 

  • Tolossa K, Debela E, Athanasiadou S, Tolera A, Ganga G, Houdijk JGM (2013) Ethno-medicinal study of plants used for treatment of human and livestock ailments by traditional healers in south Omo, southern Ethiopia. J Ethnobiol Ethnomed 9(1):32. https://doi.org/10.1186/1746-4269-9-32

    Article  Google Scholar 

  • Turek C, Stintzing FC (2013) Stability of essential oils: a review. Compr Rev Food Sci 12:2253–2263

    Article  Google Scholar 

  • Vera SS, Zambrano DF, Méndez-Sanchez SC, Rodríguez-Sanabria F, Stashenko EE, Luna JED (2014) Essential oils with insecticidal activity against larvae of Aedes aegypti (Diptera: Culicidae). Parasitol Res 113(7):2647–2654. https://doi.org/10.1007/s00436-014-3917-6

    Article  Google Scholar 

  • Vignesh A, Elumalai D, Rama P, Elangovan K, Murugesan K (2016) Chemical composition and larvicidal activity of the essential oil of Glycosmis pentaphylla (Retz.) against three mosquito vectors. Int J Mosq Res 3(2):62–67

    Google Scholar 

  • WHO (2012) Handbook for integrated vector management. World Health 646 Organization, Geneva

  • World Health Organization (2005) Guidelines for laboratory and field testing of mosquito larvicides. Communicable disease control, prevention and eradication, WHO pesticide evaluation scheme. WHO, Geneva, WHO/CDS/WHOPES/GCDPP/1.3

  • Xue RD, Barnard DR, Ali A (2001) Laboratory and field evaluation of insect repellents as oviposition deterrents against the mosquito Aedes albopictus. Med Vet Entomol15: 126–131

  • Zhu L, Tian Y (2011) Chemical composition and larvicidal activity of Blumea densiflora essential oils against Anopheles anthropophagus: a malarial vector mosquito. Parasitol Res 109(5):1417–1422. https://doi.org/10.1007/s00436-011-2388-2

    Article  Google Scholar 

  • Zhu L, Tian Y (2013) Chemical composition and larvicidal activity of essential oil of Artemisia gilvescens against Anopheles anthropophagus. Parasitol Res 112(3):1137–1142. https://doi.org/10.1007/s00436-012-3243-9

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Professor and Head of the Department of Zoology, Annamalai University for laboratory provisions granted. The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group no. RG-1438-091.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marimuthu Govindarajan or Giovanni Benelli.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govindarajan, M., Vaseeharan, B., Alharbi, N.S. et al. High efficacy of (Z)-γ-bisabolene from the essential oil of Galinsoga parviflora (Asteraceae) as larvicide and oviposition deterrent against six mosquito vectors. Environ Sci Pollut Res 25, 10555–10566 (2018). https://doi.org/10.1007/s11356-018-1203-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1203-3

Keywords

Navigation