Log in

A Doubly Latent Space Joint Model for Local Item and Person Dependence in the Analysis of Item Response Data

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Item response theory (IRT) is one of the most widely utilized tools for item response analysis; however, local item and person independence, which is a critical assumption for IRT, is often violated in real testing situations. In this article, we propose a new type of analytical approach for item response data that does not require standard local independence assumptions. By adapting a latent space joint modeling approach, our proposed model can estimate pairwise distances to represent the item and person dependence structures, from which item and person clusters in latent spaces can be identified. We provide an empirical data analysis to illustrate an application of the proposed method. A simulation study is provided to evaluate the performance of the proposed method in comparison with existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. An adjacency matrix is a square matrix to represent a network, whose elements indicate whether or not pairs of nodes are connected (creating edges) in the network.

  2. The black ellipse is completely overlapped with the green ellipse, indicating that there is a strong dependence between items 1 and 3.

  3. Note that the ‘dimensions’ of a latent space are different from ‘dimensions’ in multidimensional IRT. The dimensions of a latent space are arbitrary coordinates to define a Euclidean space for pairwise distance among items as well as among persons. Clusters of items in the latent space, which will be detected as the result of the DLSJM estimation, may be seen as the dimensions (or factors) of items.

  4. None of the existing methods in psychometrics can identify both item and person clusters simultaneously; hence, a full scope comparison with an existing method may be infeasible.

References

  • Bishop, Y., Fienberg, S., & Holland, P. (1975). Discrete multivariate analysis. Cambridge: MIT Press.

    Google Scholar 

  • Borg, I., & Groenen, P. J. F. (2005). Modern multidimensional scaling: Theory and applications (2nd ed.). New York, NY: Springer.

    Google Scholar 

  • Byrnes, J. P., & Overton, W. F. (1986). Reasoning about certainty and uncertainty in concrete, causal, and propositional context. Developmental Psychology, 22, 793–799.

    Article  Google Scholar 

  • Chalmers, R. P. (2012). mirt: A multidimensional item response theory package for the R environment. Journal of Statistical Software, 48, 1–29.

    Article  Google Scholar 

  • Chen, W.-H., & Thissen, D. (1997). Local dependence indexes for item pairs using item response theory. Journal of Educational and Behavioral Statistics, 22, 265–289.

    Article  Google Scholar 

  • De Ayala, R. J., & Hertzog, M. A. (1991). The assessment of unidimensionality for use in item response theory. Multivariate Behavioral Research, 26, 765–792.

    Article  PubMed  Google Scholar 

  • Draney, K. (2007). The Saltus model applied to proportional reasoning data. Journal of Applied Measurement, 8, 438–455.

    PubMed  Google Scholar 

  • Draney, K., Wilson, M., Gluck, J., & Spiel, C. (2007). Mixture models in a developmental context. In R. Hancock & K. M. Samuelson (Eds.), Latent variable mixture models (pp. 199–216). Charlotte, NC: Information Age.

    Google Scholar 

  • Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods, 50, 195–212.

    Article  PubMed  Google Scholar 

  • Evans, J. S. B. T., Newstead, S. E., & Byrne, R. M. J. (1993). Human reasoning: The psychology of deduction. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Fox, J., & Glas, C. A. (2001). Bayesian estimation of a multilevel IRT model using Gibbs sampling. Psychometrika, 66, 271–288.

    Article  Google Scholar 

  • Friel, N., Rastelli, R., Wyse, J., & Raftery, A. E. (2016). Interlocking directorates in Irish companies using a latent space model for bipartite networks. Proceedings of the National Academy of Sciences of the United States of America, 113, 6629–6634.

    Article  PubMed  PubMed Central  Google Scholar 

  • Glas, C. A., & Suarez-Falcon, J. C. (2003). A comparison of item-fit statistics for the three parameter logistic model. Applied Psychological Measurement, 27, 87–106.

    Article  Google Scholar 

  • Gollini, I., & Murphy, T. B. (2014). Mixture of latent trait analyzers for model-based clustering of categorical data. Statistics and Computing, 24, 569–588.

    Article  Google Scholar 

  • Gollini, I., & Murphy, T. B. (2016). Joint modeling of multiple network views. Journal of Computational and Graphical Statistics, 25, 246–265.

    Article  Google Scholar 

  • Handcock, M. S., Raftery, A. E., & Tantrum, J. M. (2007). Model-based clustering for social network. Journal of the Royal Statistical Society, Series A, 170, 301–354.

    Article  Google Scholar 

  • Hechenbichler, K., & Schliep, K. (2004). Weighted k-nearest-neighbor techniques and ordinal classification. Technical Report 399, Ludwig-Maximilians University, Munich.

  • Hoff, P., Raftery, A., & Handcock, M. S. (2002). Latent space approaches to social network analysis. Journal of the American Statistical Association, 97, 1090–1098.

    Article  Google Scholar 

  • Janveau-Brennan, G., & Markovits, H. (1999). The development of reasoning with causal conditionals. Developmental Psychology, 35, 904–911.

    Article  PubMed  Google Scholar 

  • Kamata, A., & Bauer, D. J. (2008). A note on the relation between factor analytic and item response theory models. Structural Equation Modeling, 15, 136–153.

    Article  Google Scholar 

  • Krivitsky, P. N., Handcock, M. S., Raftery, A. E., & Hoff, P. D. (2009). Representing degree distributions, clustering, and homophily in social networks with latent cluster random network models. Social Networks, 31, 204–213.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kruis, J., & Maris, G. (2016). Three representations of the ising model. Scientific Reports, 6(34175), 1–11.

    Google Scholar 

  • Liu, Y., & Maydeu-Olivares, A. (2012). Local dependence diagnostics in IRT modeling of binary data. Educational and Psychological Measurement, 73, 254–274.

    Article  Google Scholar 

  • Markovits, H., Fleury, M.-L., Quinn, S., & Venet, M. (1998). The development of conditional reasoning and the structure of semantic memory. Child Development, 69, 742–755.

    Article  PubMed  Google Scholar 

  • Maydeu-Olivares, A., & Joe, H. (2005). Limited- and full-information estimation and goodness-of-fit testing in 2n contingency tables. Journal of the American Statistical Association, 100, 1009–1020.

    Article  Google Scholar 

  • Maydeu-Olivares, A., & Joe, H. (2006). Limited information goodness-of-fit testing in multidimensional contingency tables. Psychometrika, 71, 713–732.

    Article  Google Scholar 

  • McDonald, R. P. (1982). Linear versus nonlinear models in item response theory. Applied Psychological Measurement, 6, 379–396.

    Article  Google Scholar 

  • Ng, A., Jordan, M., & Weiss, Y. (2002). On spectral clustering: Analysis and an algorithm. In T. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems (Vol. 14, pp. 849–856). Cambridge, MA: MIT Press.

    Google Scholar 

  • Oh, M.-S., & Raftery, A. (2001). Bayesian multidimensional scaling and choice of dimension. Journal of the American Statistical Association, 96, 1031–1044.

    Article  Google Scholar 

  • Overton, W. F. (1985). Scientific methodologies and the competence- moderator performance issue. In E. D. Neimark, R. de Lisi, & J. L. Newman (Eds.), Moderators of competence (pp. 15–41). Hillsdale: Erlbaum.

    Google Scholar 

  • Piaget, J. (1971). Biology and knowledge. Chicago: University of Chicago Press.

    Google Scholar 

  • Raftery, A., Niu, X., Hoff, P., & Yeung, K. (2012). Fast inference for the latent space network model using a case–control approximate likelihood. Journal of Computational and Graphical Statistics, 21, 909–919.

    Article  Google Scholar 

  • Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: Danish Institute for Educational Research.

    Google Scholar 

  • Rastelli, R., Friel, N., & Raftery, A. (2016). Properties of latent variable network models. Network Science, 4, 407–432.

    Article  Google Scholar 

  • Roberge, J. J., & Mason, E. J. (1978). Effects of negation on adolescents’ class and conditional reasoning abilities. The Journal of General Psychology, 98, 187–195.

    Article  PubMed  Google Scholar 

  • Rost, J. (1990). Rasch models in latent classes: An integration of two approaches to item analysis. Applied Psychological Measurement, 14, 271–282.

    Article  Google Scholar 

  • Shortreed, S., Handcock, M. S., & Hoff, P. (2006). Positional estimation within a latent space model for networks. Methodology, 2, 24–33.

    Article  Google Scholar 

  • Spiel, C., & Gluck, J. (2008). A model based test of competence profile and competence level in deductive reasoning. In J. Hartig, E. Klieme, & D. Leutner (Eds.), Assessment of competencies in educational contexts: State of the art and future prospects (pp. 41–60). Gottingen: Hogrefe.

    Google Scholar 

  • Spiel, C., Gluck, J., & Gossler, H. (2001). Stability and change of unidimensionality: The sample case of deductive reasoning. Journal of Adolescent Research, 16, 150–168.

    Article  Google Scholar 

  • Stout, W., Habing, B., Douglas, J., Kim, H., Roussos, L., & Zhang, J. (1996). Conditional covariance-based nonparametric multidimensionality assessment. Applied Psychological Measurement, 20, 331–354.

    Article  Google Scholar 

  • Takene, Y. (2007). Applications of multidimensional scaling in psychometrics. In C. R. Rao & S. Sinharay (Eds.), Handbook of statistics (Vol. 26, pp. 359–400). Amsterdam: Elsevier.

    Google Scholar 

  • van Borkulo, C. D., Borsboom, D., Epskamp, S., Blanken, T. F., Boschloo, L., Schoevers, R. A., et al. (2014). A new method for constructing networks from binary data. Scientific Reports, 4(5918), 1–10.

    Google Scholar 

  • von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17, 395–416.

    Article  Google Scholar 

  • Wainer, H., & Kiely, G. L. (1987). Item clusters and computerized adaptive testing: A case for testlets. Journal of Educational Measurement, 24, 185–201.

    Article  Google Scholar 

  • Wilson, M., & Adams, R. J. (1995). Rasch models for item bundles. Psychometrika, 60, 181–198.

    Article  Google Scholar 

  • Yen, W. M. (1984). Effects of local item dependence on the fit and equating performance of the three parameter logistic model. Applied Psychological Measurement, 8, 125–145.

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the Editor, the Associate Editor, and three anonymous reviewers for their careful reading and detailed comments on the previous versions of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ick Hoon **.

Additional information

Both Ick Hoon ** and Minjeong Jeon are first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 828 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**, I.H., Jeon, M. A Doubly Latent Space Joint Model for Local Item and Person Dependence in the Analysis of Item Response Data. Psychometrika 84, 236–260 (2019). https://doi.org/10.1007/s11336-018-9630-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-018-9630-0

Keywords

Navigation