Log in

Possible role of moderate exercise training in modulating gene expression of adipose tissue remodeling markers in obese male rats

  • Research
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Purpose

Obesity is a growing public health problem characterized by adipose tissue (AT) dysfunction that is associated with metabolic complications. Exercise is a crucial intervention for the treatment of obesity. However, the role of moderate exercise training in modulating AT remodeling process remains unclear. Therefore, the present study aimed to investigate the effect of moderate swimming exercise on gene expression of AT remodeling markers in obese rats.

Methods

Thirty-two adult male wistar rats were divided into equal non-obese and obese groups. Each group was subdivided into sedentary and exercised subgroups. Moderate exercise training protocol was performed by swimming 30 min, 5 times a week for 8 weeks.

Results

HFD feeding increased anthropometric parameters, visceral adiposity, lipids, insulin resistance and inflammation. Findings revealed a significant upregulation of VEGF-A, HIF-1α, CD11c, OPN and CD44 and a significant downregulation of CD163 in the VAT of obese sedentary rats. All these parameters were reversed after swimming exercise. VEGF-A expression was positively correlated with visceral fat weight and adiposity index in obese subgroups. HIF-1α expression was positively correlated with HOMA-IR in both obese subgroups and negatively correlated with IL-10 only in obese exercised subgroup. CD11c, OPN and CD44 expressions were positively correlated with HOMA-IR and TNF-α in both subgroups. CD163 expression was negatively correlated with HOMA-IR and TNF-α in obese exercised subgroup.

Conclusions

Moderate exercise training exerts protective effects in obesity and related metabolic dysfunctions through modulating gene expression of AT remodeling markers. These markers could be possible targets for treatment of obesity and associated pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Samakidou GE, Koliaki CC, Liberopoulos EN, Katsilambros NL (2023) Non-classical aspects of obesity pathogenesis and their relative clinical importance for obesity treatment. Healthcare (Basel) 11(9):1310. https://doi.org/10.3390/healthcare11091310

    Article  PubMed  Google Scholar 

  2. Michailidou Z, Gomez-Salazar M, Alexaki VI (2022) Innate immune cells in the adipose tissue in health and metabolic disease. J Innate Immun 14(1):4–30. https://doi.org/10.1159/000515117

    Article  CAS  PubMed  Google Scholar 

  3. Park J, Huh JY, Oh J, Kim JI, Han SM, Shin KC et al (2019) Activation of invariant natural killer T cells stimulates adipose tissue remodeling via adipocyte death and birth in obesity. Genes Dev 33(23–24):1657–1672. https://doi.org/10.1101/gad.329557.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Qiu Y, Fernández-García B, Lehmann HI, Li G, Kroemer G, López-Otín C, **ao J (2023) Exercise sustains the hallmarks of health. J Sport Health Sci 12(1):8–35. https://doi.org/10.1016/j.jshs.2022.10.003

    Article  PubMed  Google Scholar 

  5. Li L, Wei Y, Fang C, Liu S, Zhou F, Zhao G et al (2021) Exercise retards ongoing adipose tissue fibrosis in diet-induced obese mice. Endocr Connect 10(3):325–335. https://doi.org/10.1530/EC-20-0643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rosa-Neto JC, Silveira LS (2020) Endurance exercise mitigates immunometabolic adipose tissue disturbances in cancer and obesity. Int J Mol Sci 21(24):9745. https://doi.org/10.3390/ijms21249745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maharjan BR, Martinez-Huenchullan SF, McLennan SV, Twigg SM, Williams PF (2021) Exercise induces favorable metabolic changes in white adipose tissue preventing high-fat diet obesity. Physiol Rep 9(16):e14929. https://doi.org/10.14814/phy2.14929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. INSTITUTE OF LABORATORY ANIMAL RESOURCES (U.S.). Guide for the care and use of laboratory animals (1985) Bethesda, Md. Public Health Service, National Insititutes of Health, U.S. Dept. of Health and Human Services

    Google Scholar 

  9. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M et al (2020) The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol 18(7):e3000410. https://doi.org/10.1371/journal.pbio.3000410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu CY, Chang CW, Lee HC, Chen YJ, Tsai TH, Chiau JS et al (2016) Metabolic damage presents differently in young and early-aged C57BL/6 mice fed a high-fat diet. Int J Gerontol 10:105–111. https://doi.org/10.1016/j.ijge.2015.10.004

    Article  Google Scholar 

  11. Tunca U, Saygin M, Ozmen O, Aslankoc R, Yalcin A (2021) The impact of moderate-intensity swimming exercise on learning and memory in aged rats: the role of sirtuin-1. Iran J Basic Med Sci 24(10):1413–1420. https://doi.org/10.22038/IJBMS.2021.58145.12920

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lapmanee S, Charoenphandhu N, Krishnamra N, Charoenphandhu J (2012) Anxiolytic-like actions of reboxetine, venlafaxine and endurance swimming in stressed male rats. Behav Brain Res 231(1):20–28. https://doi.org/10.1016/j.bbr.2012.02.037

    Article  CAS  PubMed  Google Scholar 

  13. Novelli EL, Diniz YS, Galhardi CM, Ebaid GM, Rodrigues HG, Mani F et al (2007) Anthropometrical parameters and markers of obesity in rats. Lab Anim 41(1):111–119. https://doi.org/10.1258/002367707779399518

    Article  CAS  PubMed  Google Scholar 

  14. Taylor BA, Phillips SJ (1996) Detection of obesity QTLs on mouse chromosomes 1 and 7 by selective DNA pooling. Genomics 34(3):389–398. https://doi.org/10.1006/geno.1996.0302

    Article  CAS  PubMed  Google Scholar 

  15. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18(6):499–502

    Article  CAS  PubMed  Google Scholar 

  16. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419. https://doi.org/10.1007/BF00280883

    Article  CAS  PubMed  Google Scholar 

  17. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  18. Linden MA, PincuY MSA, Woods JA, Baynard T (2014) Moderate exercise training provides modest protection against adipose tissue inflammatory gene expression in response to high-fat feeding. Physiol Rep 2(7):e12071. https://doi.org/10.14814/phy2.12071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ahmadi-Kani Golzar F, Fathi R, Mahjoub S (2019) High-fat diet leads to adiposity and adipose tissue inflammation: the effect of whey protein supplementation and aerobic exercise training. Appl Physiol Nutr Metab 44(3):255–262. https://doi.org/10.1139/apnm-2018-0307

    Article  CAS  PubMed  Google Scholar 

  20. Speretta GF, Rosante MC, Duarte FO, Leite RD, Lino AD, Andre RA et al (2012) The effects of exercise modalities on adiposity in obese rats. Clinics 67(12):1469–1477. https://doi.org/10.6061/clinics/2012(12)19

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ropelle ER, Flores MB, Cintra DE, Rocha GZ, Pauli JR, Morari J et al (2010) IL-6 and IL-10 anti-inflammatory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKbeta and ER stress inhibition. PLoS Biol 8(8):e1000465. https://doi.org/10.1371/journal.pbio.1000465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ogasawara J, Nomura S, Rahman N, Sakurai T, Kizaki T, Izawa T et al (2010) Hormone-sensitive lipase is critical mediators of acute exercise-induced regulation of lipolysis in rat adipocytes. Biochem Biophys Res Commun 400(1):134–139. https://doi.org/10.1016/j.bbrc.2010.08.026

    Article  CAS  PubMed  Google Scholar 

  23. Ogasawara J, Sakurai T, Kizaki T, Ishibashi Y, Izawa T, Sumitani Y et al (2012) Higher levels of ATGL are associated with exercise-induced enhancement of lipolysis in rat epididymal adipocytes. PLoS ONE 7(7):e40876. https://doi.org/10.1371/journal.pone.0040876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jenkins NT, Padilla J, Rector RS, Laughlin MH (2013) Influence of regular physical activity and caloric restriction on β-adrenergic and natriuretic peptide receptor expression in retroperitoneal adipose tissue of OLETF rats. Exp Physiol 98(11):1576–1584. https://doi.org/10.1113/expphysiol.2013.074658

    Article  CAS  PubMed  Google Scholar 

  25. Goh J, Goh KP, Abbasi A (2016) Exercise and adipose tissue macrophages: new frontiers in obesity research? Front Endocrinol 7:65. https://doi.org/10.3389/fendo.2016.00065

    Article  Google Scholar 

  26. Andrei AM, Berbecaru-Iovan A, Din-Anghel FR, Stănciulescu CE, Berbecaru-Iovan S, Baniţă IM et al (2017) Interplay between hypoxia, inflammation and adipocyte remodeling in the metabolic syndrome. In: Zheng J, Zhou C (eds) Hypoxia and human diseases. China, Intech Open

    Google Scholar 

  27. Ozmen F, Ozmen MM, Gelecek S, Bilgic I, Moran M, Sahin TT (2016) STEAP4 and HIF-1α gene expressions in visceral and subcutaneous adipose tissue of the morbidly obese patients. Mol Immunol 73:53–59. https://doi.org/10.1016/j.molimm.2016.03.008

    Article  CAS  PubMed  Google Scholar 

  28. He Q, Gao Z, Yin J, Zhang J, Yun Z, Ye J (2011) Regulation of HIF-1{alpha} activity in adipose tissue by obesity-associated factors: adipogenesis, insulin, and hypoxia. Am J Physiol Endocrinol Metab 300(5):E877-885. https://doi.org/10.1152/ajpendo.00626.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Karki S, Ngo DTM, Farb MG, Park SY, Saggese SM, Hamburg NM et al (2017) WNT5A regulates adipose tissue angiogenesis via antiangiogenic VEGF-A(165)b in obese humans. Am J Physiol Heart Circ Physiol 313(1):H200-h206. https://doi.org/10.1152/ajpheart.00776.2016

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nourshahi M, Bagheri M, Fallah H (2019) The effect of single bout of continuous and high intensity interval exercise on VEGF levels in adipose tissue in obese male wistar rats. Med J Tabriz Univ Med Sci Health Serv 40(6):74–80

    Google Scholar 

  31. Czarkowska-Paczek B, Zendzian-Piotrowska M, Bartlomiejczyk I, Przybylski J, Gorski J (2011) The influence of physical exercise on the generation of TGF-β1, PDGF-AA, and VEGF-A in adipose tissue. Eur J Appl Physiol 111(5):875–881. https://doi.org/10.1007/s00421-010-1693-2

    Article  CAS  PubMed  Google Scholar 

  32. Van Pelt DW, Guth LM, Horowitz JF (2017) Aerobic exercise elevates markers of angiogenesis and macrophage IL-6 gene expression in the subcutaneous adipose tissue of overweight-to-obese adults. J Appl Physiol 123(5):1150–1159. https://doi.org/10.1152/japplphysiol.00614.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gealekman O, Guseva N, Hartigan C, Apotheker S, Gorgoglione M, Gurav K et al (2011) Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation 123(2):186–194. https://doi.org/10.1161/CIRCULATIONAHA.110.970145

    Article  PubMed  PubMed Central  Google Scholar 

  34. Song MG, Lee HJ, ** BY, Gutierrez-Aguilar R, Shin KH, Choi SH et al (2016) Depot-specific differences in angiogenic capacity of adipose tissue in differential susceptibility to diet-induced obesity. Mol Metab 5(11):1113–1120. https://doi.org/10.1016/j.molmet.2016.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Disanzo BL, You T (2014) Effects of exercise training on indicators of adipose tissue angiogenesis and hypoxia in obese rats. Metabolism 63(4):452–455. https://doi.org/10.1016/j.metabol.2013.12.004

    Article  CAS  PubMed  Google Scholar 

  36. Ludzki AC, Pataky MW, Cartee GD, Horowitz JF (2018) Acute endurance exercise increases Vegfa mRNA expression in adipose tissue of rats during the early stages of weight gain. Appl Physiol Nutr Metab 43(7):751–754. https://doi.org/10.1139/apnm-2017-0434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fujisaka S, Usui I, Ikutani M, Aminuddin A, Takikawa A, Tsuneyama K et al (2013) Adipose tissue hypoxia induces inflammatory M1 polarity of macrophages in an HIF-1α-dependent and HIF-1α-independent manner in obese mice. Diabetologia 56(6):1403–1412. https://doi.org/10.1007/s00125-013-2885-1

    Article  CAS  PubMed  Google Scholar 

  38. Xu M, Wang YM, Li WQ, Huang CL, Li J, **e WH et al (2022) Ccrl2 deficiency deteriorates obesity and insulin resistance through increasing adipose tissue macrophages infiltration. Genes Dis 9(2):429–442. https://doi.org/10.1016/j.gendis.2020.08.009

    Article  CAS  PubMed  Google Scholar 

  39. Oliveira AG, Araujo TG, Carvalho BM, Guadagnini D, Rocha GZ, Bagarolli RA et al (2013) Acute exercise induces a phenotypic switch in adipose tissue macrophage polarization in diet-induced obese rats. Obesity (Silver Spring) 21(12):2545–2556. https://doi.org/10.1002/oby.20402

    Article  CAS  PubMed  Google Scholar 

  40. Bradley RL, Jeon JY, Liu FF, Maratos-Flier E (2008) Voluntary exercise improves insulin sensitivity and adipose tissue inflammation in diet-induced obese mice. Am J Physiol Endocrinol Metab 295(3):E586-594. https://doi.org/10.1152/ajpendo.00309.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jeong JH, Lee YR, Park HG, Lee WL (2015) The effects of either resveratrol or exercise on macrophage infiltration and switching from M1 to M2 in high fat diet mice. J Exerc Nutrition Biochem 19(2):65–72. https://doi.org/10.5717/jenb.2015.15060203

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shanaki M, Khosravi M, Khoshdooni-Farahani A, Dadashi A, Heydari MF, Delfan M et al (2020) High-intensity interval training reversed high-fat diet-induced m1-macrophage polarization in rat adipose tissue via inhibition of NOTCH signaling. J Inflamm Res 13:165–174. https://doi.org/10.2147/JIR.S237049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sun K, Tordjman J, Clément K, Scherer PE (2013) Fibrosis and adipose tissue dysfunction. Cell Metab 18(4):470–477. https://doi.org/10.1016/j.cmet.2013.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Scatena M, Liaw L, Giachelli CM (2007) Osteopontin: a multifunctional molecule regulating chronic inflammation and vascular disease. Arterioscler Thromb Vasc Biol 27(11):2302–2309. https://doi.org/10.1161/ATVBAHA.107.144824

    Article  CAS  PubMed  Google Scholar 

  45. Nigro P, Vamvini M, Yang J, Caputo T, Ho L-L, Papadopoulos D et al (2022) Exercise training remodels inguinal white adipose tissue through adaptations in innervation, vascularization and the extracellular matrix. Cell Rep 42(4):112392. https://doi.org/10.1016/j.celrep.2023.112392

    Article  CAS  Google Scholar 

  46. Kang HS, Liao G, DeGraff LM, Gerrish K, Bortner CD, Garantziotis S et al (2013) CD44 plays a critical role in regulating diet-induced adipose inflammation, hepatic steatosis, and insulin resistance. PLoS ONE 8(3):e58417. https://doi.org/10.1371/journal.pone.0058417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nomiyama T, Perez-Tilve D, Ogawa D, Gizard F, Zhao Y, Heywood EB et al (2007) Osteopontin mediates obesity-induced adipose tissue macrophage infiltration and insulin resistance in mice. J Clin Investig 117(10):2877–2888. https://doi.org/10.1172/JCI31986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dashti N, Rezaeian N, Karimi M, Kooroshfard N (2021) The effect of high intensity interval training on serum levels of osteopontin and insulin resistance index in sedentary overweight and obese women. J Sport Exerc Physiol 14(2):115–126. https://doi.org/10.52547/joeppa.14.2.115

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

A.S.A. suggested the research topic and H.M.A. performed the experimental study, biochemical and ELISA measurements and S.A.S. and S.A.Y. performed the PCR measurements and S.A.Y. performed data acquisition and H.M.A., A.S.A. M.M.A. and S.A.S. performed data analysis and interpretation and H.M.A. and S.A.Y. wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Hebatallah Mohammed Aboudeya.

Ethics declarations

Ethics approval

All animal procedures and experimental protocols were performed in compliance with the ethical guidelines of the Medical Research Institute, Alexandria University (Approval reference number: AU 01221122422).

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aboudeya, H.M., Abdou, A.S., Attia, M.M. et al. Possible role of moderate exercise training in modulating gene expression of adipose tissue remodeling markers in obese male rats. Sport Sci Health (2024). https://doi.org/10.1007/s11332-024-01206-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11332-024-01206-8

Keywords

Navigation