Log in

Ectonucleotidase inhibitors: targeting signaling pathways for therapeutic advancement—an in-depth review

  • Review
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Ectonucleotidase inhibitors are a family of pharmacological drugs that, by selectively targeting ectonucleotidases, are essential in altering purinergic signaling pathways. The hydrolysis of extracellular nucleotides and nucleosides is carried out by these enzymes, which include ectonucleoside triphosphate diphosphohydrolases (NTPDases) and ecto-5′-nucleotidase (CD73). Ectonucleotidase inhibitors can prevent the conversion of ATP and ADP into adenosine by blocking these enzymes and reduce extracellular adenosine. These molecules are essential for purinergic signaling, which is associated with a variability of physiological and pathological processes. By modifying extracellular nucleotide metabolism and improving purinergic signaling regulation, ectonucleotide pyrophosphatase/phosphodiesterase (ENPP) inhibitors have the potential to improve cancer treatment, inflammatory management, and immune response modulation. Purinergic signaling is affected by CD73 inhibitors because they prevent AMP from being converted to adenosine. These inhibitors are useful in cancer therapy and immunotherapy because they may improve chemotherapy effectiveness and alter immune responses. Purinergic signaling is controlled by NTPDase inhibitors, which specifically target enzymes involved in extracellular nucleotide breakdown. These inhibitors show promise in reducing immunological responses, thrombosis, and inflammation, perhaps assisting in the treatment of cardiovascular and autoimmune illnesses. Alkaline phosphatase (ALP) inhibitors alter the function of enzymes involved in dephosphorylation reactions, which has an impact on a variety of biological processes. By altering the body’s phosphate levels, these inhibitors may be used to treat diseases including hyperphosphatemia and certain bone problems. This article provides a guide for researchers and clinicians looking to leverage the remedial capability of ectonucleotidase inhibitors in a variety of illness scenarios by illuminating their processes, advantages, and difficulties.

Graphical Abstract

Ectonucleotidases provide a visually appealing way to explore the complex world of extracellular nucleotide metabolism. The abstract’s central visual element is a stylized depiction of the cell membrane, emphasizing the surface-bound ectonucleotidases that are essential for controlling the amounts of extracellular nucleotides. The graphical section goes on to illustrate the wider consequences of ectonucleotidase activity, addressing a number of biological mechanisms, including the regulation of immune response and neurotransmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Data availability

No datasets were generated or analyzed during the current study.

Abbreviations

ATP:

Adenosine triphosphate

NTPDase:

Ectonucleoside triphosphate di-phosphohydrolases

UDP:

Uridine-5′-diphosphate

h-NTPDase:

Human NTPDase

r-NTPDase:

Rat NTPDase

ENPP:

Ectonucleotide pyrophosphatase/phosphodiesterases

h-ENPP:

Human ENPP

ADP:

Adenosine diphosphate

ALP:

Alkaline phosphatases

TNAP:

Tissue-nonspecific alkaline phosphatase

QSAR:

Quantitative structure activity relationship

IALP:

Intestinal alkaline phosphatase

MDS:

Molecular dynamics simulations

b-TNAP:

Bovine-tissue non-specific ALP

BIALP:

Bovine intestinal alkaline phosphatase

NAD+ :

Nicotinamide-adenine dinucleotide

PPADS:

Pyridoxalphasposphate-6-azophenyl-2ʹ,4ʹ-di-sulphonic acid

AMP:

Adenosine monophosphate

RB-2:

Reactive blue 2

STING:

Stimulator of interferon genes

UTP:

Uridine-5′-triphosphate

LOD:

Limit of detection

cAMP:

Cyclic adenosine monophosphate

R 2 :

The correlation coefficient

PC-1:

Plasma cell membrane protein-1 (ENPP-1)

SAR:

Structure activity relationship

CYP:

Cytochrome P450

ADME:

Absorption, distribution, metabolism, and excretion

TME:

Tumor microenvironment

CoMFA:

Comparative molecular field analysis

MD:

Molecular dynamics

Q 2 :

Cross-validated coefficient

VS:

Virtual screening

HUVEC:

Human umbilical vein endothelial cells

hERG:

Human ether-a-go-go-related gene

PLAP:

Placental alkaline phosphatase

MOA:

Mechanism of action

CoMSIA:

Comparative molecular similarity index analysis

References

  1. Zimmermann H, Zebisch M, Sträter N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8:437–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fredholm BB, IJzerman AP, Jacobson KA, Klotz K-N, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53(4):527–52

    CAS  PubMed  Google Scholar 

  3. Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller CE (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors—an update. Pharmacol Rev 63(1):1–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Al-Rashida M, Qazi SU, Batool N, Hameed A, Iqbal J (2017) Ectonucleotidase inhibitors: a potent review (2011–2016). Expert Opin Ther Pat 27(12):1291–1304

    Article  CAS  PubMed  Google Scholar 

  5. Gao Z-G, Jacobson KA (2007) Emerging adenosine receptor agonists. Expert Opin Emerg Drugs 12(3):479–492

    Article  CAS  PubMed  Google Scholar 

  6. Fredholm BB, Abbracchio MP, Burnstock G, Dubyak GR, Harden TK, Jacobson KA et al (1997) Towards a revised nomenclature for P1 and P2 receptors. Trends Pharmacol Sci 18(3):79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tozaki-Saitoh H, Takeda H, Inoue K (2022) The role of microglial purinergic receptors in pain signaling. Molecules 27(6):1919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Haskó G, Pacher P (2008) A2A receptors in inflammation and injury: lessons learned from transgenic animals. J Leukoc Biol 83(3):447–455

    Article  PubMed  Google Scholar 

  9. Nishat S, Khan LA, Ansari ZM, Basir SF (2016) Adenosine A3 receptor: a promising therapeutic target in cardiovascular disease. Curr Cardiol Rev 12(1):18–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mahmood A, Iqbal J (2022) Purinergic receptors modulators: an emerging pharmacological tool for disease management. Med Res Rev 42(4):1661–1703

    Article  CAS  PubMed  Google Scholar 

  11. Bao X, **e L (2022) Targeting purinergic pathway to enhance radiotherapy-induced immunogenic cancer cell death. J Exp Clin Cancer Res 41(1):1–18

    Article  Google Scholar 

  12. Jacob F, Novo CP, Bachert C, Van Crombruggen K (2013) Purinergic signaling in inflammatory cells: P2 receptor expression, functional effects, and modulation of inflammatory responses. Purinergic Signal 9:285–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. North RA (2016) P2X receptors. Philos Trans R Soc B: Biol Sci 371(1700):20150427

    Article  Google Scholar 

  14. Baqi Y (2015) Ecto-nucleotidase inhibitors: recent developments in drug discovery. Mini Rev Med Chem 15(1):21–33

    Article  CAS  PubMed  Google Scholar 

  15. Hechler B, Cattaneo M, Gachet C, editors. The P2 receptors in platelet function. Seminars in thrombosis and hemostasis; 2005: Copyright 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York.

  16. Burnstock G (2012) Purinergic signalling: its unpopular beginning, its acceptance and its exciting future. BioEssays 34(3):218–225

    Article  CAS  PubMed  Google Scholar 

  17. Lazarowski ER (2012) Vesicular and conductive mechanisms of nucleotide release. Purinergic Signal 8(3):359–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Burnstock G (2017) Purinergic signalling and neurological diseases: an update. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders) 16(3):257–65

    CAS  Google Scholar 

  19. von Kügelgen I, Hoffmann K (2016) Pharmacology and structure of P2Y receptors. Neuropharmacology 104:50–61

    Article  Google Scholar 

  20. Frelinger AL, Bhatt DL, Lee RD, Mulford DJ, Wu J, Nudurupati S et al (2013) Clopidogrel pharmacokinetics and pharmacodynamics vary widely despite exclusion or control of polymorphisms (CYP2C19, ABCB1, PON1), noncompliance, diet, smoking, co-medications (including proton pump inhibitors), and pre-existent variability in platelet function. J Am Coll Cardiol 61(8):872–879

    Article  CAS  PubMed  Google Scholar 

  21. Cattaneo M (2015) P2Y12 receptors: structure and function. J Thromb Haemost 13:S10–S16

    Article  CAS  PubMed  Google Scholar 

  22. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32(1):19–29

    Article  CAS  PubMed  Google Scholar 

  23. Haas CB, Lovászi M, Braganhol E, Pacher P, Haskó G (2021) Ectonucleotidases in inflammation, immunity, and cancer. J Immunol 206(9):1983–1990

    Article  CAS  PubMed  Google Scholar 

  24. Nitschke Y, Rutsch F (2012) Genetics in arterial calcification: lessons learned from rare diseases. Trends Cardiovasc Med 22(6):145–149

    Article  CAS  PubMed  Google Scholar 

  25. Umezu-Goto M, Kishi Y, Taira A, Hama K, Dohmae N, Takio K et al (2002) Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J Cell Biol 158(2):227–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ferrero E, Faini AC, Malavasi F (2019) A phylogenetic view of the leukocyte ectonucleotidases. Immunol Lett 205:51–58

    Article  CAS  PubMed  Google Scholar 

  27. Johnson RC, Leopold JA, Loscalzo J (2006) Vascular calcification: pathobiological mechanisms and clinical implications. Circ Res 99(10):1044–1059

    Article  CAS  PubMed  Google Scholar 

  28. Choi J (2023) Small molecule ectonucleotide pyrophosphatase/phosphodiesterase 1 inhibitors in cancer immunotherapy for harnessing innate immunity. Bull Korean Chem Soc 44(2):88–99

    Article  CAS  Google Scholar 

  29. Antonioli L, Blandizzi C, Pacher P, Haskó G (2013) Immunity, inflammation and cancer: a leading role for adenosine. Nat Rev Cancer 13(12):842–857

    Article  CAS  PubMed  Google Scholar 

  30. Eltzschig HK, Sitkovsky MV, Robson SC (2012) Purinergic signaling during inflammation. N Engl J Med 367(24):2322–2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Allard B, Longhi MS, Robson SC, Stagg J (2017) The ectonucleotidases CD 39 and CD 73: novel checkpoint inhibitor targets. Immunol Rev 276(1):121–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang L, Fan J, Thompson LF, Zhang Y, Shin T, Curiel TJ et al (2011) CD73 has distinct roles in nonhematopoietic and hematopoietic cells to promote tumor growth in mice. J Clin Investig 121(6):2371–2382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Synnestvedt K, Furuta GT, Comerford KM, Louis N, Karhausen J, Eltzschig HK et al (2002) Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J Clin Investig 110(7):993–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Neves GM, Kagami LP, Battastini AMO, Figueiró F, Eifler-Lima VL (2023) Targeting ecto-5′-nucleotidase: a comprehensive review into small molecule inhibitors and expression modulators. Eur J Med Chem 247:115052

  35. Bajracharya B, Shrestha D, Talvani A, Gonçalves R, Afonso LCC (2022) The ecto-5 nucleotidase/CD73 mediates Leishmania amazonensis survival in macrophages. BioMed Res Int 2022:9928362

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sträter N (2006) Ecto-5’-nucleotidase: Structure function relationships. Purinergic Signal 2:343–350

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pasquini S, Contri C, Borea PA, Vincenzi F, Varani K (2021) Adenosine and inflammation: here, there and everywhere. Int J Mol Sci 22(14):7685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Savio LE, de Andrade MP, Da Silva CG, Coutinho-Silva R (2018) The P2X7 receptor in inflammatory diseases: angel or demon? Front Pharmacol 9:52

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wiley J, Sluyter R, Gu B, Stokes L, Fuller S (2011) The human P2X7 receptor and its role in innate immunity. Tissue Antigens 78(5):321–332

    Article  CAS  PubMed  Google Scholar 

  40. Baghbani E, Noorolyai S, Shanehbandi D, Mokhtarzadeh A, Aghebati-Maleki L, Shahgoli VK et al (2021) Regulation of immune responses through CD39 and CD73 in cancer: Novel checkpoints. Life Sci 282:119826

    Article  CAS  PubMed  Google Scholar 

  41. Millán JL (2006) Alkaline phosphatases: structure, substrate specificity and functional relatedness to other members of a large superfamily of enzymes. Purinergic Signal 2:335–341

    Article  PubMed  PubMed Central  Google Scholar 

  42. Le-Vinh B, Akkuş-Dağdeviren ZB, Le NMN, Nazir I, Bernkop-Schnürch A (2022) Alkaline phosphatase: a reliable endogenous partner for drug delivery and diagnostics. Adv Ther 5(2):2100219

    Article  CAS  Google Scholar 

  43. Sharma U, Pal D, Prasad R (2014) Alkaline phosphatase: an overview. Indian J Clin Biochem 29:269–278

    Article  CAS  PubMed  Google Scholar 

  44. Siede WH, Seiffert UB, Merle S, Goll H-G, Oremek G (1989) Alkaline phosphatase isoenzymes in rheumatic diseases. Clin Biochem 22(2):121–124

    Article  CAS  PubMed  Google Scholar 

  45. Haarhaus M, Brandenburg V, Kalantar-Zadeh K, Stenvinkel P, Magnusson P (2017) Alkaline phosphatase: a novel treatment target for cardiovascular disease in CKD. Nat Rev Nephrol 13(7):429–442

    Article  CAS  PubMed  Google Scholar 

  46. Haarhaus M, Cianciolo G, Barbuto S, La Manna G, Gasperoni L, Tripepi G et al (2022) Alkaline phosphatase: an old friend as treatment target for cardiovascular and mineral bone disorders in chronic kidney disease. Nutrients 14(10):2124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zaher DM, El-Gamal MI, Omar HA, Aljareh SN, Al-Shamma SA, Ali AJ et al (2020) Recent advances with alkaline phosphatase isoenzymes and their inhibitors. Arch Pharm 353(5):e2000011

    Article  CAS  Google Scholar 

  48. Al-Rashida M, Iqbal J (2015) Inhibition of alkaline phosphatase: an emerging new drug target. Mini Rev Med Chem 15(1):41–51

    Article  CAS  PubMed  Google Scholar 

  49. Eliahu S, Lecka J, Reiser G, Haas M, Bigonnesse F, Lévesque SA et al (2010) Diadenosine 5′, 5′′-(boranated) polyphosphonate analogues as selective nucleotide pyrophosphatase/phosphodiesterase inhibitors. J Med Chem 53(24):8485–8497

    Article  CAS  PubMed  Google Scholar 

  50. Zelikman V, Pelletier J, Simhaev L, Sela A, Gendron F-P, Arguin G et al (2018) Highly selective and potent ectonucleotide pyrophosphatase-1 (NPP1) inhibitors based on uridine 5′-Pα, α-dithiophosphate analogues. J Med Chem 61(9):3939–3951

    Article  CAS  PubMed  Google Scholar 

  51. Nadel Y, Lecka J, Gilad Y, Ben-David G, Förster D, Reiser G et al (2014) Highly potent and selective ectonucleotide pyrophosphatase/phosphodiesterase I inhibitors based on an adenosine 5′-(α or γ)-thio-(α, β-or β, γ)-methylenetriphosphate scaffold. J Med Chem 57(11):4677–4691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lecka J, Ben-David G, Simhaev L, Eliahu S, Oscar J Jr, Luyindula P et al (2013) Nonhydrolyzable ATP analogues as selective inhibitors of human NPP1: a combined computational/experimental study. J Med Chem 56(21):8308–8320

    Article  CAS  PubMed  Google Scholar 

  53. Ahmad H, Ullah S, Rahman F, Saeed A, Pelletier J, Sévigny J et al (2020) Synthesis of biphenyl oxazole derivatives via Suzuki coupling and biological evaluations as nucleotide pyrophosphatase/phosphodiesterase-1 and-3 inhibitors. Eur J Med Chem 208:112759

    Article  CAS  PubMed  Google Scholar 

  54. Anbar HS, El-Gamal R, Ullah S, Zaraei S-O, Al-Rashida M, Zaib S et al (2020) Evaluation of sulfonate and sulfamate derivatives possessing benzofuran or benzothiophene nucleus as inhibitors of nucleotide pyrophosphatases/phosphodiesterases and anticancer agents. Bioorg Chem 104:104305

    Article  CAS  PubMed  Google Scholar 

  55. El-Gamal MI, Ullah S, Zaraei S-O, Jalil S, Zaib S, Zaher DM et al (2019) Synthesis, biological evaluation, and docking studies of new raloxifene sulfonate or sulfamate derivatives as inhibitors of nucleotide pyrophosphatase/phosphodiesterase. Eur J Med Chem 181:111560

    Article  PubMed  Google Scholar 

  56. Semreen MH, El-Gamal MI, Ullah S, Jalil S, Zaib S, Anbar HS et al (2019) Synthesis, biological evaluation, and molecular docking study of sulfonate derivatives as nucleotide pyrophosphatase/phosphodiesterase (NPP) inhibitors. Bioorg Med Chem 27(13):2741–2752

    Article  CAS  PubMed  Google Scholar 

  57. Ullah S, Pelletier J, Sévigny J, Iqbal J (2022) Synthesis and biological evaluation of arylamide sulphonate derivatives as ectonucleotide pyrophosphatase/phosphodiesterase-1 and-3 inhibitors. ACS Omega 7(30):26905–26918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Patel SD, Habeski WM, Cheng AC, de la Cruz E, Loh C, Kablaoui NM (2009) Quinazolin-4-piperidin-4-methyl sulfamide PC-1 inhibitors: alleviating hERG interactions through structure based design. Bioorg Med Chem Lett 19(12):3339–3343

    Article  CAS  PubMed  Google Scholar 

  59. Jung JE, Jang Y, Jeong HJ, Kim SJ, Park K, Yu A et al (2022) Discovery of 3, 4-dihydropyrimido [4, 5-d] pyrimidin-2 (1H)-one and 3, 4-dihydropyrido [2, 3-d] pyrimidin-2 (1H)-one derivatives as novel ENPP1 inhibitors. Bioorg Med Chem Lett 75:128947

    Article  CAS  PubMed  Google Scholar 

  60. Kuhrt D, Ejaz SA, Afzal S, Khan SU, Lecka J, Sévigny J et al (2017) Chemoselective synthesis and biological evaluation of arylated 2-(Trifluoromethyl) quinolines as nucleotide pyrophosphatase (NPPs) inhibitors. Eur J Med Chem 138:816–829

    Article  CAS  PubMed  Google Scholar 

  61. Ausekle E, Ejaz SA, Khan SU, Ehlers P, Villinger A, Lecka J et al (2016) New one-pot synthesis of N-fused isoquinoline derivatives by palladium-catalyzed C-H arylation: potent inhibitors of nucleotide pyrophosphatase-1 and-3. Org Biomol Chem 14(48):11402–11414

    Article  CAS  PubMed  Google Scholar 

  62. Ullah S, El-Gamal MI, El-Gamal R, Pelletier J, Sevigny J, Shehata MK et al (2021) Synthesis, biological evaluation, and docking studies of novel pyrrolo [2, 3-b] pyridine derivatives as both ectonucleotide pyrophosphatase/phosphodiesterase inhibitors and antiproliferative agents. Eur J Med Chem 217:113339

    Article  CAS  PubMed  Google Scholar 

  63. Choudhary MI, Fatima N, Khan KM, Jalil S, Iqbal S (2006) New biscoumarin derivatives-cytotoxicity and enzyme inhibitory activities. Bioorg Med Chem 14(23):8066–8072

    Article  CAS  PubMed  Google Scholar 

  64. Khan KM, Fatima N, Rasheed M, Jalil S, Ambreen N, Perveen S et al (2009) 1, 3, 4-Oxadiazole-2 (3H)-thione and its analogues: a new class of non-competitive nucleotide pyrophosphatases/phosphodiesterases 1 inhibitors. Bioorg Med Chem 17(22):7816–7822

    Article  CAS  PubMed  Google Scholar 

  65. Khan KM, Siddiqui S, Saleem M, Taha M, Saad SM, Perveen S et al (2014) Synthesis of triazole Schiff bases: novel inhibitors of nucleotide pyrophosphatase/phosphodiesterase-1. Bioorg Med Chem 22(22):6509–6514

    Article  CAS  PubMed  Google Scholar 

  66. Lee S-Y, Perotti A, De Jonghe S, Herdewijn P, Hanck T, Müller CE (2016) Thiazolo [3, 2-a] benzimidazol-3 (2H)-one derivatives: structure–activity relationships of selective nucleotide pyrophosphatase/phosphodiesterase1 (NPP1) inhibitors. Bioorg Med Chem 24(14):3157–3165

    Article  CAS  PubMed  Google Scholar 

  67. Jeong HJ, Lee HL, Kim SJ, Jeong JH, Ji SH, Kim HB et al (2022) Identification of novel pyrrolopyrimidine and pyrrolopyridine derivatives as potent ENPP1 inhibitors. J Enzyme Inhib Med Chem 37(1):2434–2451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Supe L, Afzal S, Mahmood A, Ejaz SA, Hein M, Iaroshenko VO et al (2018) Deazapurine analogues bearing a 1H-pyrazolo [3, 4-b] pyridin-3 (2H)-one core: synthesis and biological activity. Eur J Org Chem 2018(20–21):2629–2644

    Article  CAS  Google Scholar 

  69. Jafari B, Yelibayeva N, Ospanov M, Ejaz SA, Afzal S, Khan SU et al (2016) Synthesis of 2-arylated thiadiazolopyrimidones by Suzuki-Miyaura cross-coupling: a new class of nucleotide pyrophosphatase (NPPs) inhibitors. RSC Adv 6(109):107556–107571

    Article  CAS  Google Scholar 

  70. Arif M, Shabir G, Ejaz S, Saeed A, Khan S, Lecka J et al (2022) Diacylhydrazine derivatives of 2-(5-(pyridin-3-yl)-2 H-tetrazol-2-yl) acetohydrazide and 2-(5-(pyridin-4-yl)-2 H-tetrazol-2-yl) acetohydrazide as potential inhibitors of nucleotide pyrophosphatase. Russ J Bioorg Chem 48(5):990–1001

    Article  CAS  Google Scholar 

  71. Gangar M, Goyal S, Raykar D, Khurana P, Martis AM, Goswami A et al (2022) Design, synthesis and biological evaluation studies of novel small molecule ENPP1 inhibitors for cancer immunotherapy. Bioorg Chem 119:105549

    Article  CAS  PubMed  Google Scholar 

  72. Chang L, Lee S-Y, Leonczak P, Rozenski J, De Jonghe S, Hanck T et al (2014) Imidazopyridine-and purine-thioacetamide derivatives: potent inhibitors of nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1). J Med Chem 57(23):10080–10100

    Article  CAS  PubMed  Google Scholar 

  73. Mihajlovic K, Bukvic MA, Dragic M, Scortichini M, Jacobson KA, Nedeljkovic N (2023) Anti-inflammatory potency of novel ecto-5′-nucleotidase/CD73 inhibitors in astrocyte culture model of neuroinflammation. Eur J Pharmacol 956:175943

    Article  CAS  PubMed  Google Scholar 

  74. Bowman CE, da Silva RG, Pham A, Young SW (2019) An exceptionally potent inhibitor of human CD73. Biochemistry 58(31):3331–3334

    Article  CAS  PubMed  Google Scholar 

  75. Lawson KV, Kalisiak J, Lindsey EA, Newcomb ET, Leleti MR, Debien L et al (2020) Discovery of AB680: a potent and selective inhibitor of CD73. J Med Chem 63(20):11448–11468

    Article  CAS  PubMed  Google Scholar 

  76. Du X, Moore J, Blank BR, Eksterowicz J, Sutimantanapi D, Yuen N et al (2020) Orally bioavailable small-molecule CD73 inhibitor (OP-5244) reverses immunosuppression through blockade of adenosine production. J Med Chem 63(18):10433–10459

    Article  CAS  PubMed  Google Scholar 

  77. Sharif EU, Kalisiak J, Lawson KV, Miles DH, Newcomb E, Lindsey EA et al (2021) Discovery of potent and selective methylenephosphonic acid CD73 inhibitors. J Med Chem 64(1):845–860

    Article  CAS  PubMed  Google Scholar 

  78. Bhattarai S, Freundlieb M, Pippel J, Meyer A, Abdelrahman A, Fiene A et al (2015) α, β-Methylene-ADP (AOPCP) derivatives and analogues: development of potent and selective ecto-5′-nucleotidase (CD73) inhibitors. J Med Chem 58(15):6248–6263

    Article  CAS  PubMed  Google Scholar 

  79. Junker A, Renn C, Dobelmann C, Namasivayam V, Jain S, Losenkova K et al (2019) Structure–activity relationship of purine and pyrimidine nucleotides as ecto-5′-nucleotidase (CD73) inhibitors. J Med Chem 62(7):3677–3695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bhattarai S, Pippel J, Scaletti E, Idris R, Freundlieb M, Rolshoven G et al (2020) 2-Substituted α, β-methylene-ADP derivatives: potent competitive ecto-5′-nucleotidase (CD73) inhibitors with variable binding modes. J Med Chem 63(6):2941–2957

    Article  CAS  PubMed  Google Scholar 

  81. Bhattarai S, Pippel J, Meyer A, Freundlieb M, Schmies C, Abdelrahman A et al (2019) X-ray co-crystal structure guides the way to subnanomolar competitive ecto-5′-nucleotidase (CD73) inhibitors for cancer immunotherapy. Adv Ther 2(10):1900075

    Article  CAS  Google Scholar 

  82. Ghoteimi R, Nguyen VT, Rahimova R, Grosjean F, Cros-Perrial E, Uttaro JP et al (2019) Synthesis of substituted 5′-aminoadenosine derivatives and evaluation of their inhibitory potential toward CD73. ChemMedChem 14(15):1431–1443

    Article  CAS  PubMed  Google Scholar 

  83. Liu S, Li D, Liu J, Wang H, Horecny I, Shen R, et al. 2021 A novel CD73 inhibitor SHR170008 suppresses adenosine in tumor and enhances anti-tumor activity with PD-1 blockade in a mouse model of breast cancer. OncoTargets Ther 4561–74

  84. Wen J, Zhang H, Meng C, Zhou D, Chen G, Wang J, et al. 2021 Computational investigation of adenosine 5′-(α, β-methylene)-diphosphate (AMPCP) derivatives as ecto-5′-nucleotidase (CD73) inhibitors by using 3D-QSAR, molecular docking, and molecular dynamics simulations. Struct Chem 1–2

  85. Ghoteimi R, Braka A, Rodriguez C, Cros-Perrial E, Uttaro J-P, Mathé C et al (2021) 4-Substituted-1, 2, 3-triazolo nucleotide analogues as CD73 inhibitors, their synthesis, in vitro screening, kinetic and in silico studies. Bioorg Chem 107:104577

    Article  CAS  PubMed  Google Scholar 

  86. Channar PA, Bano S, Hassan S, Perveen F, Saeed A, Mahesar PA et al (2022) Appraisal of novel azomethine–thioxoimidazolidinone conjugates as ecto-5′-nucleotidase inhibitors: synthesis and molecular docking studies. RSC Adv 12(27):17596–17606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Grosjean F, Cros-Perrial E, Braka A, Uttaro JP, Chaloin L, Jordheim LP et al (2022) Synthesis and studies of potential inhibitors of CD73 based on a triazole scaffold. Eur J Org Chem 2022(21):e202101175

    Article  CAS  Google Scholar 

  88. Beatty JW, Lindsey EA, Thomas-Tran R, Debien L, Mandal D, Jeffrey JL et al (2020) Discovery of potent and selective non-nucleotide small molecule inhibitors of CD73. J Med Chem 63(8):3935–3955

    Article  CAS  PubMed  Google Scholar 

  89. Hassan S, Channar PA, Larik FA, Saeed A, Shah HS, Lecka J et al (2018) Synthesis of novel (E)-1-(2-(2-(4 (dimethylamino) benzylidene) hydrazinyl)-4-methylthiazol-5-yl) ethanone derivatives as ecto-5′-nucleotidase inhibitors. R Soc Open Sci 5(9):180837

    Article  PubMed  PubMed Central  Google Scholar 

  90. Iqbal J, Saeed A, Raza R, Matin A, Hameed A, Furtmann N et al (2013) Identification of sulfonic acids as efficient ecto-5′-nucleotidase inhibitors. Eur J Med Chem 70:685–691

    Article  CAS  PubMed  Google Scholar 

  91. Raza R, Saeed A, Lecka J, Sevigny J, Iqbal J (2012) Identification of small molecule sulfonic acids as ecto-5’-nucleotidase inhibitors. Med Chem 8(6):1133–1139

    CAS  PubMed  Google Scholar 

  92. Lyu S, Zhao Y, Zeng X, Chen X, Meng Q, Ding Z et al (2021) Identification of phelligridin-based compounds as novel human CD73 inhibitors. J Chem Inf Model 61(3):1275–1286

    Article  CAS  PubMed  Google Scholar 

  93. Viviani LG, Piccirillo E, Ulrich H, AT-d, Amaral (2019) Virtual screening approach for the identification of hydroxamic acids as novel human ecto-5′-nucleotidase inhibitors. J Chem Inf Model 60(2):621–30

  94. Ashraf A, Shafiq Z, Khan Jadoon MS, Tahir MN, Pelletier J, Sevigny J et al (2020) Synthesis, characterization, and in silico studies of novel spirooxindole derivatives as ecto-5′-nucleotidase inhibitors. ACS Med Chem Lett 11(12):2397–2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rivera RP, Hassan S, Ehlers P, Lecka J, Sévigny J, Rodríguez ET et al (2018) Chemoselective synthesis and human ecto-5′-nucleotidase inhibitory activity of 2-trifluoromethyl-4, 6-diarylquinolines. ChemistrySelect 3(30):8587–8592

    Article  CAS  Google Scholar 

  96. Miliutina M, Janke J, Chirkina E, Hassan S, Ejaz SA, Khan SU et al (2017) Domino reactions of chromone-3-carboxylic acids with aminoheterocycles: synthesis of heteroannulated pyrido [2, 3-c] coumarins and their optical and biological activity. Eur J Org Chem 2017(47):7148–7159

    Article  CAS  Google Scholar 

  97. Ripphausen P, Freundlieb M, Brunschweiger A, Zimmermann H, Müller CE (2012) Virtual screening identifies novel sulfonamide inhibitors of ecto-5′-nucleotidase. J Med Chem 55(14):6576–81

  98. Baqi Y, Lee S-Y, Iqbal J, Ripphausen P, Lehr A, Scheiff AB et al (2010) Development of potent and selective inhibitors of ecto-5′-nucleotidase based on an anthraquinone scaffold. J Med Chem 53(5):2076–2086

    Article  CAS  PubMed  Google Scholar 

  99. Miliutina M, Janke J, Hassan S, Zaib S, Iqbal J, Lecka J et al (2018) A domino reaction of 3-chlorochromones with aminoheterocycles. Synthesis of pyrazolopyridines and benzofuropyridines and their optical and ecto-5′-nucleotidase inhibitory effects. Org Biomol Chem 16(5):717–32

    Article  CAS  PubMed  Google Scholar 

  100. Warren MC, Matissek S, Rausch M, Panduro M, Hall RJ, Dulak A et al (2023) SRF617 is a potent inhibitor of CD39 with immunomodulatory and antitumor properties. ImmunoHorizons 7(5):366–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang Y, Hu J, Ji K, Jiang S, Dong Y, Sun L, et al. 2023 CD39 inhibition and VISTA blockade may overcome radiotherapy resistance by targeting exhausted CD8+ T cells and immunosuppressive myeloid cells. Cell Rep Med 4 8

  102. Xu Z, Gu C, Yao X, Guo W, Wang H, Lin T et al (2020) CD73 promotes tumor metastasis by modulating RICS/RhoA signaling and EMT in gastric cancer. Cell Death Dis 11(3):202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lévesque S, Lavoie ÉG, Lecka J, Bigonnesse F, Sévigny J (2007) Specificity of the ecto-ATPase inhibitor ARL 67156 on human and mouse ectonucleotidases. Br J Pharmacol 152(1):141–150

    Article  PubMed  PubMed Central  Google Scholar 

  104. Lecka J, Gillerman I, Fausther M, Salem M, Munkonda MN, Brosseau JP et al (2013) 8-BuS-ATP derivatives as specific NTPD ase1 inhibitors. Br J Pharmacol 169(1):179–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gendron F-P, Halbfinger E, Fischer B, Duval M, D’Orléans-Juste P, Beaudoin AR (2000) Novel inhibitors of nucleoside triphosphate diphosphohydrolases: chemical synthesis and biochemical and pharmacological characterizations. J Med Chem 43(11):2239–2247

    Article  CAS  PubMed  Google Scholar 

  106. Gillerman I, Lecka J, Simhaev L, Munkonda MN, Fausther M, Martín-Satué M et al (2014) 2-Hexylthio-β, γ-CH2-ATP is an effective and selective NTPDase2 inhibitor. J Med Chem 57(14):5919–5934

    Article  CAS  PubMed  Google Scholar 

  107. Brunschweiger A, Iqbal J, Umbach F, Scheiff AB, Munkonda MN, Sévigny J et al (2008) Selective nucleoside triphosphate diphosphohydrolase-2 (NTPDase2) inhibitors: nucleotide mimetics derived from uridine-5′-carboxamide. J Med Chem 51(15):4518–4528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zebisch M, Krauss M, Schäfer P, Sträter N (2012) Crystallographic evidence for a domain motion in rat nucleoside triphosphate diphosphohydrolase (NTPDase) 1. J Mol Biol 415(2):288–306

    Article  CAS  PubMed  Google Scholar 

  109. Fiene A, Baqi Y, Lecka J, Sévigny J, Müller CE (2015) Fluorescence polarization immunoassays for monitoring nucleoside triphosphate diphosphohydrolase (NTPDase) activity. Analyst 140(1):140–148

    Article  CAS  PubMed  Google Scholar 

  110. Afzal S, Al-Rashida M, Hameed A, Pelletier J, Sévigny J, Iqbal J (2021) Synthesis, in-vitro evaluation and molecular docking studies of oxoindolin phenylhydrazine carboxamides as potent and selective inhibitors of ectonucleoside triphosphate diphosphohydrolase (NTPDase). Bioorg Chem 112:104957

    Article  CAS  PubMed  Google Scholar 

  111. Afzal S, Al-Rashida M, Hameed A, Pelletier J, Sévigny J, Iqbal J (2020) Functionalized oxoindolin hydrazine carbothioamide derivatives as highly potent inhibitors of nucleoside triphosphate diphosphohydrolases. Front Pharmacol 11:585876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Baqi Y, Rashed M, Schaekel L, Malik EM, Pelletier J, Sévigny J et al (2020) Development of anthraquinone derivatives as ectonucleoside triphosphate diphosphohydrolase (NTPDase) inhibitors with selectivity for NTPDase2 and NTPDase3. Front Pharmacol 11:1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zebisch M, Baqi Y, Schäfer P, Müller CE, Sträter N (2014) Crystal structure of NTPDase2 in complex with the sulfoanthraquinone inhibitor PSB-071. J Struct Biol 185(3):336–341

    Article  CAS  PubMed  Google Scholar 

  114. Baqi Y, Weyler S, Iqbal J, Zimmermann H, Müller CE (2009) Structure-activity relationships of anthraquinone derivatives derived from bromaminic acid as inhibitors of ectonucleoside triphosphate diphosphohydrolases (E-NTPDases). Purinergic Signal 5:91–106

    Article  CAS  PubMed  Google Scholar 

  115. Shehata MK, Uzair M, Zaraei SO, Shahin AI, Shah SJ, Ullah S et al (2023) Synthesis, biological evaluation, and molecular modeling studies of a new series of imidazothiazole or imidazooxazole derivatives as inhibitors of ectonucleoside triphosphate diphosphohydrolases (NTPDases). Med Chem Res 32(2):314–325

    Article  CAS  Google Scholar 

  116. Murtaza A, Afzal S, Zaman G, Saeed A, Pelletier J, Sévigny J et al (2021) Divergent synthesis and elaboration of structure activity relationship for quinoline derivatives as highly selective NTPDase inhibitor. Bioorg Chem 115:105240

    Article  CAS  PubMed  Google Scholar 

  117. Hayat K, Afzal S, Saeed A, Murtaza A, Rahman SU, Khan KM et al (2019) Investigation of new quinoline derivatives as promising inhibitors of NTPDases: synthesis, SAR analysis and molecular docking studies. Bioorg Chem 87:218–226

    Article  CAS  PubMed  Google Scholar 

  118. Abbas S, Afzal S, Nadeem H, Hussain D, Langer P, Sévigny J et al (2022) Synthesis, characterization and biological evaluation of thiadiazole amide derivatives as nucleoside triphosphate diphosphohydrolases (NTPDases) inhibitors. Bioorg Chem 118:105456

    Article  CAS  PubMed  Google Scholar 

  119. Begum Z, Ullah S, Akram M, Uzair M, Ullah F, Pelletier J et al (2022) Identification of thienopyrimidine glycinates as selective inhibitors for h-NTPDases. Bioorg Chem 129:106196

    Article  CAS  PubMed  Google Scholar 

  120. Müller CE, Iqbal J, Baqi Y, Zimmermann H, Röllich A, Stephan H (2006) Polyoxometalates—a new class of potent ecto-nucleoside triphosphate diphosphohydrolase (NTPDase) inhibitors. Bioorg Med Chem Lett 16(23):5943–5947

    Article  PubMed  Google Scholar 

  121. Khan KM, Salar U, Afzal S, Wadood A, Taha M, Perveen S et al (2019) Schiff bases of tryptamine as potent inhibitors of nucleoside triphosphate diphosphohydrolases (NTPDases): structure-activity relationship. Bioorg Chem 82:253–266

    Article  PubMed  Google Scholar 

  122. Lecka J, Fausther M, Künzli B, Sévigny J (2014) Ticlopidine in its prodrug form is a selective inhibitor of human NTPDase1. Mediators Inflamm 2014:547480

    Article  PubMed  PubMed Central  Google Scholar 

  123. Bi C, Schäkel L, Mirza S, Sylvester K, Pelletier J, Lee S-Y et al (2023) Synthesis and structure–activity relationships of ticlopidine derivatives and analogs as inhibitors of ectonucleotidase CD39. Bioorg Chem 135:106460

    Article  CAS  PubMed  Google Scholar 

  124. Zhao Y, Chen X, Ding Z, He C, Gao G, Lyu S et al (2021) Identification of novel CD39 inhibitors based on virtual screening and enzymatic assays. J Chem Inf Model 62(21):5289–5304

    Article  PubMed  Google Scholar 

  125. Sidique S, Ardecky R, Su Y, Narisawa S, Brown B, Millán JL et al (2009) Design and synthesis of pyrazole derivatives as potent and selective inhibitors of tissue-nonspecific alkaline phosphatase (TNAP). Bioorg Med Chem Lett 19(1):222–225

    Article  CAS  PubMed  Google Scholar 

  126. Andleeb H, Hussain M, Ejaz SA, Sevigny J, Farman M, Yasinzai M et al (2020) Synthesis and computational studies of highly selective inhibitors of human recombinant tissue non-specific alkaline phosphatase (h-TNAP): A therapeutic target against vascular calcification. Bioorg Chem 101:103999

    Article  CAS  PubMed  Google Scholar 

  127. Khurshid A, Saeed A, Ashraf Z, Abbas Q, Hassan M (2021) Understanding the enzymatic inhibition of intestinal alkaline phosphatase by aminophenazone-derived aryl thioureas with aided computational molecular dynamics simulations: synthesis, characterization SAR and kinetic profiling. Mol Divers 25:1701–1715

    Article  CAS  PubMed  Google Scholar 

  128. Hosseini Nasab N, Raza H, Shim RS, Hassan M, Kloczkowski A, Kim SJ (2022) Potent alkaline phosphatase inhibitors, pyrazolo-oxothiazolidines: synthesis, biological evaluation, molecular docking, and kinetic studies. Int J Mol Sci 23(21):13262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chang L, Mébarek S, Popowycz F, Pellet-Rostaing S, Lemaire M, Buchet R (2011) Synthesis and evaluation of thiophenyl derivatives as inhibitors of alkaline phosphatase. Bioorg Med Chem Lett 21(8):2297–2301

    Article  CAS  PubMed  Google Scholar 

  130. Li L, Chang L, Pellet-Rostaing S, Liger F, Lemaire M, Buchet R et al (2009) Synthesis and evaluation of benzo [b] thiophene derivatives as inhibitors of alkaline phosphatases. Bioorg Med Chem 17(20):7290–7300

    Article  CAS  PubMed  Google Scholar 

  131. Channar PA, Irum H, Mahmood A, Shabir G, Zaib S, Saeed A et al (2019) Design, synthesis and biological evaluation of trinary benzocoumarin-thiazoles-azomethines derivatives as effective and selective inhibitors of alkaline phosphatase. Bioorg Chem 91:103137

    Article  PubMed  Google Scholar 

  132. Saeed A, Khurshid A, Shabir G, Mahmood A, Zaib S, Iqbal J (2020) An efficient synthetic approach toward a sporadic heterocyclic scaffold: 1, 3-oxathiol-2-ylidenes; alkaline phosphatase inhibition and molecular docking studies. Bioorg Med Chem Lett 30(13):127238

    Article  CAS  PubMed  Google Scholar 

  133. Kumar MR, Manikandan A, Sivakumar A, Dhayabaran VV (2018) An eco-friendly catalytic system for multicomponent, one-pot synthesis of novel spiro-chromeno indoline-triones and their anti-prostate cancer potentials evaluated via alkaline phosphatase inhibition mechanism. Bioorg Chem 81:44–54

    Article  CAS  PubMed  Google Scholar 

  134. Bhatti HA, Khatoon M, Al-Rashida M, Bano H, Iqbal N, Yousuf S et al (2017) Facile dimethyl amino group triggered cyclic sulfonamides synthesis and evaluation as alkaline phosphatase inhibitors. Bioorg Chem 71:10–18

    Article  CAS  PubMed  Google Scholar 

  135. Ejaz SA, Saeed A, Siddique MN, un Nisa Z, Khan S, Lecka J, et al. Synthesis, characterization and biological evaluation of novel chalcone sulfonamide hybrids as potent intestinal alkaline phosphatase inhibitors. Bioorg Chem 2017 70:229-36

  136. Al-Rashida M, Raza R, Abbas G, Shah MS, Kostakis GE, Lecka J et al (2013) Identification of novel chromone based sulfonamides as highly potent and selective inhibitors of alkaline phosphatases. Eur J Med Chem 66:438–49

    Article  CAS  PubMed  Google Scholar 

  137. Al-Rashida M, Ejaz SA, Ali S, Shaukat A, Hamayoun M, Ahmed M et al (2015) Diarylsulfonamides and their bioisosteres as dual inhibitors of alkaline phosphatase and carbonic anhydrase: structure activity relationship and molecular modelling studies. Bioorg Med Chem 23(10):2435–2444

    Article  CAS  PubMed  Google Scholar 

  138. Dahl R, Sergienko EA, Su Y, Mostofi YS, Yang L, Simao AM et al (2009) Discovery and validation of a series of aryl sulfonamides as selective inhibitors of tissue-nonspecific alkaline phosphatase (TNAP). J Med Chem 52(21):6919–6925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Iqbal Z, Ashraf Z, Hassan M, Abbas Q, Jabeen E (2019) Substituted phenyl [(5-benzyl-1, 3, 4-oxadiazol-2-yl) sulfanyl] acetates/acetamides as alkaline phosphatase inhibitors: Synthesis, computational studies, enzyme inhibitory kinetics and DNA binding studies. Bioorg Chem 90:103108

    Article  CAS  PubMed  Google Scholar 

  140. Iqbal Z, Iqbal A, Ashraf Z, Latif M, Hassan M, Nadeem H (2019) Synthesis and docking studies of N-(5-(alkylthio)-1, 3, 4-oxadiazol-2-yl) methyl) benzamide analogues as potential alkaline phosphatase inhibitors. Drug Dev Res 80(5):646–654

    Article  CAS  PubMed  Google Scholar 

  141. Abbasi MA, Nazir M, Ur-Rehman A, Siddiqui SZ, Hassan M, Raza H et al (2019) Bi-heterocyclic benzamides as alkaline phosphatase inhibitors: mechanistic comprehensions through kinetics and computational approaches. Archiv der Pharmazie 352(3):1800278

    Article  Google Scholar 

  142. Mumtaz A, Saeed K, Mahmood A, Zaib S, Saeed A, Pelletier J et al (2020) Bisthioureas of pimelic acid and 4-methylsalicylic acid derivatives as selective inhibitors of tissue-nonspecific alkaline phosphatase (TNAP) and intestinal alkaline phosphatase (IAP): Synthesis and molecular docking studies. Bioorg Chem 101:103996

    Article  CAS  PubMed  Google Scholar 

  143. Saeed A, Saddique G, Channar PA, Larik FA, Abbas Q, Hassan M et al (2018) Synthesis of sulfadiazinyl acyl/aryl thiourea derivatives as calf intestinal alkaline phosphatase inhibitors, pharmacokinetic properties, lead optimization, Lineweaver-Burk plot evaluation and binding analysis. Bioorg Med Chem 26(12):3707–3715

    Article  PubMed  Google Scholar 

  144. Grodner B, Napiórkowska M. 2017 Characterization and inhibition studies of tissue nonspecific alkaline phosphatase by aminoalkanol derivatives of 1, 7-dimethyl-8, 9-diphenyl-4-azatricyclo [5.2. 1.02, 6] dec-8-ene-3, 5, 10-trione, new competitive and non-competitive inhibitors, by capillary electrophoresis. J Pharm Biomed Anal 143 285-90

  145. Miliutina M, Ejaz SA, Khan SU, Iaroshenko VO, Villinger A, Iqbal J et al (2017) Synthesis, alkaline phosphatase inhibition studies and molecular docking of novel derivatives of 4-quinolones. Eur J Med Chem 126:408–420

    Article  CAS  PubMed  Google Scholar 

  146. Miliutina M, Ivanov A, Ejaz SA, Iqbal J, Villinger A, Iaroshenko VO et al (2015) Diversity oriented synthesis of 6-nitro-and 6-aminoquinolones and their activity as alkaline phosphatase inhibitors. RSC Adv 5(74):60054–60078

    Article  CAS  Google Scholar 

  147. Khan I, Shah SJA, Ejaz SA, Ibrar A, Hameed S, Lecka J et al (2015) Investigation of quinoline-4-carboxylic acid as a highly potent scaffold for the development of alkaline phosphatase inhibitors: synthesis, SAR analysis and molecular modelling studies. RSC Adv 5(79):64404–64413

    Article  CAS  Google Scholar 

  148. Salar U, Khan KM, Iqbal J, Ejaz SA, Hameed A, Al-Rashida M et al (2017) Coumarin sulfonates: new alkaline phosphatase inhibitors; in vitro and in silico studies. Eur J Med Chem 131:29–47

    Article  CAS  PubMed  Google Scholar 

  149. Iqbal J, El-Gamal MI, Ejaz SA, Lecka J, Sévigny J, Oh C-H (2018) Tricyclic coumarin sulphonate derivatives with alkaline phosphatase inhibitory effects: In vitro and docking studies. J Enzyme Inhib Med Chem 33(1):479–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Jafari B, Ospanov M, Ejaz SA, Yelibayeva N, Khan SU, Amjad ST et al (2018) 2-Substituted 7-trifluoromethyl-thiadiazolopyrimidones as alkaline phosphatase inhibitors. Synthesis, structure activity relationship and molecular docking study. Eur J Med Chem 144:116–27

    Article  CAS  PubMed  Google Scholar 

  151. Altaf R, Nadeem H, Iqbal MN, Ilyas U, Ashraf Z, Imran M et al (2022) Synthesis, biological evaluation, 2D-QSAR, and molecular simulation studies of dihydropyrimidinone derivatives as alkaline phosphatase Inhibitors. ACS Omega 7(8):7139–7154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ashraf A, Ejaz SA, Rahman SU, Siddiqui WA, Arshad MN, Lecka J et al (2018) Hybrid compounds from chalcone and 1, 2-benzothiazine pharmacophores as selective inhibitors of alkaline phosphatase isozymes. Eur J Med Chem 159:282–291

    Article  CAS  PubMed  Google Scholar 

  153. Ashraf J, Mughal EU, Alsantali RI, Sadiq A, Jassas RS, Naeem N et al (2021) 2-Benzylidenebenzofuran-3 (2 H)-ones as a new class of alkaline phosphatase inhibitors: synthesis, SAR analysis, enzyme inhibitory kinetics and computational studies. RSC Adv 11(56):35077–35092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Meštrović V, Pavela-Vrančič M (2003) Inhibition of alkaline phosphatase activity by okadaic acid, a protein phosphatase inhibitor. Biochimie 85(7):647–650

    Article  PubMed  Google Scholar 

  155. Lanier M, Sergienko E, Simão AM, Su Y, Chung T, Millán JL et al (2010) Design and synthesis of selective inhibitors of placental alkaline phosphatase. Bioorg Med Chem 18(2):573–579

    Article  CAS  PubMed  Google Scholar 

  156. Ibrar A, Zaib S, Jabeen F, Iqbal J, Saeed A (2016) Unraveling the alkaline phosphatase inhibition, anticancer, and antileishmanial potential of coumarin–triazolothiadiazine hybrids: design, synthesis, and molecular docking analysis. Arch Pharm 349(7):553–565

    Article  CAS  Google Scholar 

  157. Petrosyan A, Ghochikyan TV, Ejaz SA, Mardiyan ZZ, Khan SU, Grigoryan T et al (2017) Synthesis of alkynylated dihydrofuran-2 (3H)-ones as potent and selective inhibitors of tissue non-specific alkaline phosphatase. ChemistrySelect 2(20):5677–5683

    Article  CAS  Google Scholar 

  158. Faisal M, Shahid S, Ghumro SA, Saeed A, Larik FA, Shaheen Z et al (2018) DABCO–PEG ionic liquid-based synthesis of acridine analogous and its inhibitory activity on alkaline phosphatase. Synth Commun 48(4):462–472

    Article  CAS  Google Scholar 

  159. Khan I, Hanif M, Hussain MT, Khan AA, Aslam MAS, Rama NH et al (2012) Synthesis, acetylcholinesterase and alkaline phosphatase inhibition of some new 1, 2, 4-triazole and 1, 3, 4-thiadiazole derivatives. Aust J Chem 65(10):1413–1419

    Article  CAS  Google Scholar 

  160. Channar SA, Channar PA, Saeed A, Alsfouk AA, Ejaz SA, Ujan R et al (2022) Exploring thiazole-linked thioureas using alkaline phosphatase assay, biochemical evaluation, computational analysis and structure–activity relationship (SAR) studies. Med Chem Res 31(10):1792–1802

    Article  CAS  Google Scholar 

  161. Saeed A, Javaid M, Shah SJA, Channar PA, Shabir G, Tehzeeb A et al (2022) A zomethine-clubbed thiazoles as human tissue non-specific alkaline phosphatase (h-TNAP) and intestinal alkaline phosphatase (h-IAP) Inhibitors: kinetics and molecular docking studies. Mol Diversity 26(6):3241–3254

    Article  CAS  Google Scholar 

  162. Aziz H, Mahmood A, Zaib S, Saeed A, El-Seedi HR, Pelletier J et al (2021) Synthesis, characterization, alkaline phosphatase inhibition assay and molecular modeling studies of 1-benzylidene-2-(4-tert-butylthiazol-2-yl) hydrazines. J Biomol Struct Dyn 39(16):6140–6153

    Article  CAS  PubMed  Google Scholar 

  163. Miliutina M, Ejaz SA, Iaroshenko VO, Villinger A, Iqbal J, Langer P (2016) Synthesis of 3, 3′-carbonyl-bis (chromones) and their activity as mammalian alkaline phosphatase inhibitors. Org Biomol Chem 14(2):495–502

    Article  CAS  PubMed  Google Scholar 

  164. Khan NA, Rashid F, Jadoon MSK, Jalil S, Khan ZA, Orfali R et al (2022) Design, synthesis, and biological evaluation of novel dihydropyridine and pyridine analogs as potent human tissue nonspecific alkaline phosphatase inhibitors with anticancer activity: ROS and DNA damage-induced apoptosis. Molecules 27(19):6235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Mustafa MN, Channar PA, Sarfraz M, Saeed A, Ejaz SA, Aziz M et al (2023) Synthesis, kinetic studies and in-silico investigations of novel quinolinyl-iminothiazolines as alkaline phosphatase inhibitors. J Enzyme Inhib Med Chem 38(1):2163394

    Article  PubMed  PubMed Central  Google Scholar 

  166. Ahmed A, Rehman S-u, Ejaz SA, Saeed A, Ujan R, Channar PA et al (2022) Exploring 2-tetradecanoylimino-3-aryl-4-methyl-1, 3-thiazolines derivatives as alkaline phosphatase inhibitors: biochemical evaluation and computational analysis. Molecules 27(19):6766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Abbasi M, Nazir M, Siddiqui S, Raza H, Zafar A, Shah SA et al (2021) Synthesis, in vitro, and in silico studies of N-(substituted-phenyl)-3-(4-phenyl-1-piperazinyl) propanamides as potent alkaline phosphatase inhibitors. Russ J Bioorg Chem 47:1086–1096

    Article  CAS  Google Scholar 

  168. Jeffrey JL, Lawson KV, Powers JP (2020) Targeting metabolism of extracellular nucleotides via inhibition of ectonucleotidases CD73 and CD39. J Med Chem 63(22):13444–13465

    Article  CAS  PubMed  Google Scholar 

  169. Lopez V, Schäkel L, Schuh HM, Schmidt MS, Mirza S, Renn C et al (2021) Sulfated polysaccharides from macroalgae are potent dual inhibitors of human ATP-hydrolyzing ectonucleotidases NPP1 and CD39. Mar Drugs 19(2):51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Schäkel L, Schmies CC, Idris RM, Luo X, Lee S-Y, Lopez V et al (2020) Nucleotide analog ARL67156 as a lead structure for the development of CD39 and dual CD39/CD73 ectonucleotidase inhibitors. Front Pharmacol 11:1294

    Article  PubMed  PubMed Central  Google Scholar 

  171. Younus HA, Hameed A, Mahmood A, Khan MS, Saeed M, Batool F et al (2020) Sulfonylhydrazones: design, synthesis and investigation of ectonucleotidase (ALP & e5′ NT) inhibition activities. Bioorg Chem 100:103827

    Article  CAS  PubMed  Google Scholar 

  172. Younus HA, Saeed M, Mahmood A, Jadoon MSK, Hameed A, Asari A et al (2023) Exploring chromone sulfonamides and sulfonylhydrazones as highly selective ectonucleotidase inhibitors: synthesis, biological evaluation and in silico study. Bioorg Chem 134:106450

    Article  CAS  PubMed  Google Scholar 

  173. Schäkel L, Mirza S, Pietsch M, Lee SY, Keuler T, Sylvester K et al (2021) 2-Substituted thienotetrahydropyridine derivatives: allosteric ectonucleotidase inhibitors. Arch Pharm 354(12):2100300

    Article  Google Scholar 

  174. Ghomashi R, Ghomashi S, Aghaei H, Massah S, Massah AR (2023) Recent Advances in biological active sulfonamide based hybrid compounds part C: multicomponent sulfonamide hybrids. Curr Med Chem 30(37):4181–4255

    Article  CAS  PubMed  Google Scholar 

  175. Hassan S, Ejaz SA, Saeed A, Shehzad M, Khan SU, Lecka J et al (2018) 4-Aminopyridine based amide derivatives as dual inhibitors of tissue non-specific alkaline phosphatase and ecto-5′-nucleotidase with potential anticancer activity. Bioorg Chem 76:237–248

    Article  CAS  PubMed  Google Scholar 

  176. Andleeb H, Hameed S, Ejaz SA, Khan I, Zaib S, Lecka J et al (2019) Probing the high potency of pyrazolyl pyrimidinetriones and thioxopyrimidinediones as selective and efficient non-nucleotide inhibitors of recombinant human ectonucleotidases. Bioorg Chem 88:102893

    Article  CAS  PubMed  Google Scholar 

  177. Saeed A, Ejaz SA, Shehzad M, Hassan S, al-Rashida M, Lecka J, et al. 2016 3-(5-(Benzylideneamino) thiazol-3-yl)-2 H-chromen-2-ones: a new class of alkaline phosphatase and ecto-5′-nucleotidase inhibitors. RSC Adv 6(25):21026-36

  178. Channar PA, Shah SJA, Hassan S, Nisa Zu, Lecka J, Sévigny J et al (2017) Isonicotinohydrazones as inhibitors of alkaline phosphatase and ecto-5′-nucleotidase. Chem Biol Drug Des 89(3):365–70

    Article  CAS  PubMed  Google Scholar 

  179. Abdellatif KR, Bakr RB (2018) New advances in synthesis and clinical aspects of pyrazolo [3, 4-d] pyrimidine scaffolds. Bioorg Chem 78:341–357

    Article  CAS  PubMed  Google Scholar 

  180. Al-Rashida M, Batool G, Sattar A, Ejaz SA, Khan S, Lecka J et al (2016) 2-Alkoxy-3-(sulfonylarylaminomethylene)-chroman-4-ones as potent and selective inhibitors of ectonucleotidases. Eur J Med Chem 115:484–94

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Chemistry Department Quaid-i-Azam University Islamabad.

Author information

Authors and Affiliations

Authors

Contributions

Aamer Saeed: conceptualization, supervision, manuscript revision, and finalization.

Huzaifa Sharafat Ali: literature survey, manuscript writing, and structure drawing.

Corresponding author

Correspondence to Aamer Saeed.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no conflict of interest.

Compliance with ethical standards

The authors declare full compliance of ethical standards and have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharafat, R.H., Saeed, A. Ectonucleotidase inhibitors: targeting signaling pathways for therapeutic advancement—an in-depth review. Purinergic Signalling (2024). https://doi.org/10.1007/s11302-024-10031-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11302-024-10031-0

Keywords

Navigation