Log in

Caffeine: a potential mechanism for anti-obesity

  • Review
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Obesity refers to the excessive accumulation of fat caused by a long-term imbalance between energy intake (EI) and energy expenditure (EE). Over recent years, obesity has become a major public health challenge. Caffeine is a natural product that has been demonstrated to exert anti-obesity effects; however, the mechanisms responsible for the effect of caffeine on weight loss have yet to be fully elucidated. Most obesity-related deaths are due to cardiovascular disease. Recent research has demonstrated that caffeine can reduce the risk of death from cardiovascular disease; thus, it can be hypothesized that caffeine may represent a new therapeutic agent for weight loss. In this review, we synthesize data arising from clinical and animal studies over the last decade and discuss the potential mechanisms by which caffeine may induce weight loss, focusing particularly on increasing energy consumption, suppressing appetite, altering lipid metabolism, and influencing the gut microbiota. Finally, we summarize the major challenges associated with caffeine and anti-obesity research and highlight possible directions for future research and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

No new data were created or analyzed in this study. All data referenced in this article are obtained from previously published studies, which are cited in the References section.

References

  1. Flegal KM, Kit BK, Orpana H, Graubard BI (2013) Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA 309(1):71–82. https://doi.org/10.1001/jama.2012.113905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Blüher M (2019) Obesity: global epidemiology and pathogenesis. Nat Reviews Endocrinol 15(5):288–298. https://doi.org/10.1038/s41574-019-0176-8

    Article  Google Scholar 

  3. Nguyen DM, El-Serag HB (2010) The epidemiology of obesity. Gastroenterol Clin N Am 39(1):1–7. https://doi.org/10.1016/j.gtc.2009.12.014

    Article  CAS  Google Scholar 

  4. Jia W (2015) Obesity in China: its characteristics, diagnostic criteria, and implications. Front Med 9(2):129–133. https://doi.org/10.1007/s11684-015-0387-x

    Article  PubMed  Google Scholar 

  5. Allom V, Mullan B, Smith E, Hay P, Raman J (2018) Breaking bad habits by improving executive function in individuals with obesity. BMC Public Health 18(1). https://doi.org/10.1186/s12889-018-5392-y

  6. Booth FW, Roberts CK, Laye MJ (2012) Lack of exercise is a major cause of chronic diseases. Compr Physiol 1143–1211

  7. Zeng Q, Li N, Pan X-F, Chen L, Pan A (2021) Clinical management and treatment of obesity in China. Lancet Diabetes Endocrinol 9(6):393–405. https://doi.org/10.1016/s2213-8587(21)00047-4

    Article  PubMed  Google Scholar 

  8. Aranceta Bartrina J (2013) Public health and the prevention of obesity: failure or success? Nutr Hosp 28(5):128–137. https://doi.org/10.3305/nh.2013.28.sup5.6928

    Article  PubMed  Google Scholar 

  9. Deen D (2004) Metabolic syndrome: time for action. Am Fam Physician Am Fam Physician 69(12):2875–2882

    PubMed  Google Scholar 

  10. Engin A (2017) The definition and prevalence of obesity and metabolic syndrome. Obesity and Lipotoxicity. Adv Exp Med Biol, p. 1–17

  11. Kulkarni K, Karssiens T, Kumar V, Pandit H (2016) Obesity and osteoarthritis. Maturitas. https://doi.org/10.1016/j.maturitas.2016.04.006. 89:22 – 8

    Article  PubMed  Google Scholar 

  12. Bray GA (2014) Medical treatment of obesity: the past, the present and the future. Best Pract Res Clin Gastroenterol 28(4):665–684. https://doi.org/10.1016/j.bpg.2014.07.015

    Article  CAS  PubMed  Google Scholar 

  13. Kwon Y-J, Kwon GE, Lee HS, Choi MH, Lee J-W (2022) The effect of orlistat on sterol metabolism in obese patients. Front Endocrinol 13. https://doi.org/10.3389/fendo.2022.824269

  14. Nauck MA, Quast DR, Wefers J, Meier JJ (2021) GLP-1 receptor agonists in the treatment of type 2 diabetes – state-of-the-art. Mol Metabolism 46. https://doi.org/10.1016/j.molmet.2020.101102

  15. Mannucci E, Dicembrini I, Rotella F, Rotella CM (2008) Orlistat and sibutramine beyond weight loss. Nutrition, Metabolism and Cardiovascular diseases. 18(5):342–348. https://doi.org/10.1016/j.numecd.2007.03.010

  16. Oberholzer HM, van der Schoor C, Bester MJ (2015) Sibutramine, a serotonin–norepinephrine reuptake inhibitor, causes fibrosis in rats. Environ Toxicol Pharmacol 40(1):71–76. https://doi.org/10.1016/j.etap.2015.05.011

    Article  CAS  PubMed  Google Scholar 

  17. Gadde KM, Allison DB, Ryan DH, Peterson CA, Troupin B, Schwiers ML et al (2011) Effects of low-dose, controlled-release, phentermine plus topiramate combination on weight and associated comorbidities in overweight and obese adults (CONQUER): a randomised, placebo-controlled, phase 3 trial. Lancet 377(9774):1341–1352. https://doi.org/10.1016/s0140-6736(11)60205-5

    Article  CAS  PubMed  Google Scholar 

  18. Connolly HM, Crary JL, McGoon MD, Hensrud DD, Edwards BS, Edwards WD et al (1997) Valvular heart disease associated with fenfluramine-phentermine. N Engl J Med 337(9):581–588. https://doi.org/10.1056/NEJM199708283370901

    Article  CAS  PubMed  Google Scholar 

  19. Elsaid MI, Li Y, Bridges JFP, Brock G, Minacapelli CD, Rustgi VK (2022) Association of bariatric surgery with cardiovascular outcomes in adults with severe obesity and nonalcoholic fatty liver disease. JAMA Netw Open 5(10). https://doi.org/10.1001/jamanetworkopen.2022.35003

  20. Aminian A, Wilson R, Al-Kurd A, Tu C, Milinovich A, Kroh M et al (2022) Association of bariatric surgery with cancer risk and mortality in adults with obesity. JAMA 327(24). https://doi.org/10.1001/jama.2022.9009

  21. Collaborators GO, Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K et al (2017) Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med 377(1):13–27. https://doi.org/10.1056/NEJMoa1614362

    Article  Google Scholar 

  22. Collaborators GBDS (2021) Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 20(10):795–820. https://doi.org/10.1016/S1474-4422(21)00252-0

    Article  Google Scholar 

  23. Kim MS, Kim WJ, Khera AV, Kim JY, Yon DK, Lee SW et al (2021) Association between adiposity and cardiovascular outcomes: an umbrella review and meta-analysis of observational and mendelian randomization studies. Eur Heart J 42(34):3388–3403. https://doi.org/10.1093/eurheartj/ehab454

    Article  PubMed  PubMed Central  Google Scholar 

  24. Müller TD, Blüher M, Tschöp MH, DiMarchi RD (2021) Anti-obesity drug discovery: advances and challenges. Nat Rev Drug Discovery 21(3):201–223. https://doi.org/10.1038/s41573-021-00337-8

    Article  CAS  PubMed  Google Scholar 

  25. Qi X, Liu Y, Guo J, Zhu R, Chen W, Zheng X et al (2013) Dietary supplementation with purified mulberry (Morus Australis Poir) anthocyanins suppresses body weight gain in high-fat diet fed C57BL/6 mice. Food Chem 141(1):482–487. https://doi.org/10.1016/j.foodchem.2013.03.046

    Article  CAS  PubMed  Google Scholar 

  26. Gosselin C, Haman F (2012) Effects of green tea extracts on non-shivering thermogenesis during mild cold exposure in young men. Br J Nutr 110(2):282–288. https://doi.org/10.1017/s0007114512005089

    Article  PubMed  Google Scholar 

  27. Yoneshiro T, Aita S, Kawai Y, Iwanaga T, Saito M (2012) Nonpungent capsaicin analogs (capsinoids) increase energy expenditure through the activation of brown adipose tissue in humans. Am J Clin Nutr 95(4):845–850. https://doi.org/10.3945/ajcn.111.018606

    Article  CAS  PubMed  Google Scholar 

  28. Janssens PLHR, Hursel R, Westerterp-Plantenga MS (2016) Nutraceuticals for body-weight management: the role of green tea catechins. Physiol Behav. https://doi.org/10.1016/j.physbeh.2016.01.044. 162:83 – 7

    Article  PubMed  Google Scholar 

  29. Hursel R, Westerterp-Plantenga MS (2013) Catechin- and caffeine-rich teas for control of body weight in humans. Am J Clin Nutr 98(6):1682S–93S. https://doi.org/10.3945/ajcn.113.058396

    Article  CAS  PubMed  Google Scholar 

  30. Astrup A, Toubro S, Cannon S, Hein P, Breum L, Madsen J (1990) Caffeine: a double-blind, placebo-controlled study of its thermogenic, metabolic, and cardiovascular effects in healthy volunteers. Am J Clin Nutr 51(5):759–767. https://doi.org/10.1093/ajcn/51.5.759

    Article  CAS  PubMed  Google Scholar 

  31. Hursel R, Viechtbauer W, Dulloo AG, Tremblay A, Tappy L, Rumpler W et al (2011) The effects of catechin rich teas and caffeine on energy expenditure and fat oxidation: a meta-analysis. Obes Rev 12(7):e573–e81. https://doi.org/10.1111/j.1467-789X.2011.00862.x

    Article  CAS  PubMed  Google Scholar 

  32. Riedel A, Pignitter M, Hochkogler CM, Rohm B, Walker J, Bytof G et al (2012) Caffeine dose-dependently induces thermogenesis but restores ATP in HepG2 cells in culture. Food Funct 3(9). https://doi.org/10.1039/c2fo30053b

  33. Grgic J, Grgic I, Pickering C, Schoenfeld BJ, Bishop DJ, Pedisic Z (2020) Wake up and smell the coffee: caffeine supplementation and exercise performance—an umbrella review of 21 published meta-analyses. Br J Sports Med 54(11):681–688. https://doi.org/10.1136/bjsports-2018-100278

    Article  PubMed  Google Scholar 

  34. Liu C-W, Tsai H-C, Huang C-C, Tsai C-Y, Su Y-B, Lin M-W et al (2018) Effects and mechanisms of caffeine to improve immunological and metabolic abnormalities in diet-induced obese rats. Am J Physiology-Endocrinology Metabolism 314(5):E433–E47. https://doi.org/10.1152/ajpendo.00094.2017

    Article  CAS  Google Scholar 

  35. lcken D, Feller S, Engeli S, Mayr A, Müller A, Hilbert A et al (2015) Caffeine intake is related to successful weight loss maintenance. Eur J Clin Nutr 70(4):532–534. https://doi.org/10.1038/ejcn.2015.183

    Article  CAS  Google Scholar 

  36. Thom E (2007) The effect of chlorogenic acid enriched coffee on glucose absorption in healthy volunteers and its effect on body mass when used long-term in overweight and obese people. J Int Med Res 35(6):900–908. https://doi.org/10.1177/147323000703500620

    Article  CAS  PubMed  Google Scholar 

  37. Harpaz E, Tamir S, Weinstein A, Weinstein Y (2017) The effect of caffeine on energy balance. J Basic Clin Physiol Pharmacol 28(1):1–10. https://doi.org/10.1515/jbcpp-2016-0090

    Article  CAS  PubMed  Google Scholar 

  38. Lee L-S, Choi JH, Sung MJ, hur J-Y, Hur HJ, Park J-D et al (2015) Green tea changes serum and liver metabolomic profiles in mice with high-fat diet-induced obesity. Mol Nutr Food Res 59(4):784–794. https://doi.org/10.1002/mnfr.201400470

    Article  CAS  PubMed  Google Scholar 

  39. Dangol M, Kim S, Li CG, Fakhraei Lahiji S, Jang M, Ma Y et al (2017) Anti-obesity effect of a novel caffeine-loaded dissolving microneedle patch in high-fat diet-induced obese C57BL/6J mice. J Controlled Release 265:41–47. https://doi.org/10.1016/j.jconrel.2017.03.400

    Article  CAS  Google Scholar 

  40. Zhang L, Kujawinski DM, Federherr E, Schmidt TC, Jochmann MA (2012) Caffeine in your drink: natural or synthetic? Anal Chem 84(6):2805–2810. https://doi.org/10.1021/ac203197d

    Article  CAS  PubMed  Google Scholar 

  41. McGuire S (2014) Institute of Medicine. 2014. Caffeine in food and dietary supplements: examining safety—workshop summary. Washington, DC: The National Academies Press, 2014. Advances in Nutrition. 5(5):585-6. https://doi.org/10.3945/an.114.006692

  42. Simon J, Fung K, Raisi-Estabragh Z, Aung N, Khanji MY, Kolossváry M et al (2022) Light to moderate coffee consumption is associated with lower risk of death: a UK Biobank study. Eur J Prev Cardiol 29(6):982–991. https://doi.org/10.1093/eurjpc/zwac008/6512055

    Article  PubMed  Google Scholar 

  43. Chieng D, Kistler PM (2022) Coffee and tea on cardiovascular disease (CVD) prevention. Trends Cardiovasc Med 32(7):399–405. https://doi.org/10.1016/j.tcm.2021.08.004

    Article  CAS  PubMed  Google Scholar 

  44. Ding M, Bhupathiraju SN, Satija A, van Dam RM, Hu FB (2014) Long-term coffee consumption and risk of cardiovascular disease: a systematic review and a dose-response meta-analysis of prospective cohort studies. Circulation 129(6):643–659. https://doi.org/10.1161/circulationaha.113.005925

    Article  CAS  PubMed  Google Scholar 

  45. Pan M-H, Tung Y-C, Yang G, Li S, Ho C-T (2016) Molecular mechanisms of the anti-obesity effect of bioactive compounds in tea and coffee. Food Funct 7(11):4481–4491. https://doi.org/10.1039/c6fo01168c

    Article  CAS  PubMed  Google Scholar 

  46. Samoggia A, Rezzaghi T (2021) The consumption of caffeine-containing products to enhance sports performance: an application of an extended model of the theory of planned behavior. Nutrients 13(2). https://doi.org/10.3390/nu13020344

  47. Heckman MA, Weil J, De Gonzalez E (2010) Caffeine (1, 3, 7-trimethylxanthine) in foods: a comprehensive review on consumption, functionality, safety, and regulatory matters. J Food Sci 75(3):R77–R87. https://doi.org/10.1111/j.1750-3841.2010.01561.x

    Article  CAS  PubMed  Google Scholar 

  48. Glade MJ (2010) Caffeine—not just a stimulant. Nutrition 26(10):932–938. https://doi.org/10.1016/j.nut.2010.08.004

    Article  CAS  PubMed  Google Scholar 

  49. Herman A, Herman AP (2013) Caffeine’s mechanisms of action and its cosmetic use. Skin Pharmacol Physiol 26(1):8–14. https://doi.org/10.1159/000343174

    Article  CAS  PubMed  Google Scholar 

  50. Grant SS, Magruder KP, Friedman BH (2018) Controlling for caffeine in cardiovascular research: a critical review. Int J Psychophysiol 133:193–201. https://doi.org/10.1016/j.ijpsycho.2018.07.001

    Article  PubMed  Google Scholar 

  51. Kolahdouzan M, Hamadeh MJ (2017) The neuroprotective effects of caffeine in neurodegenerative diseases. CNS Neurosci Ther 23(4):272–290. https://doi.org/10.1111/cns.12684

    Article  PubMed  PubMed Central  Google Scholar 

  52. Postuma RB, Lang AE, Munhoz RP, Charland K, Pelletier A, Moscovich M et al (2012) Caffeine for treatment of Parkinson disease: a randomized controlled trial. Neurology 79(7):651–658. https://doi.org/10.1212/WNL.0b013e318263570d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Arendash GW, Schleif W, Rezai-Zadeh K, Jackson EK, Zacharia LC, Cracchiolo JR et al (2006) Caffeine protects Alzheimer’s mice against cognitive impairment and reduces brain beta-amyloid production. Neuroscience 142(4):941–952. https://doi.org/10.1016/j.neuroscience.2006.07.021

    Article  CAS  PubMed  Google Scholar 

  54. Dall’Igna OP, Fett P, Gomes MW, Souza DO, Cunha RA, Lara DR (2007) Caffeine and adenosine A(2a) receptor antagonists prevent beta-amyloid (25–35)-induced cognitive deficits in mice. Exp Neurol 203(1):241–245. https://doi.org/10.1016/j.expneurol.2006.08.008

    Article  CAS  PubMed  Google Scholar 

  55. MacKenzie T, Comi R, Sluss P, Keisari R, Manwar S, Kim J et al (2007) Metabolic and hormonal effects of caffeine: randomized, double-blind, placebo-controlled crossover trial. Metabolism 56(12):1694–1698. https://doi.org/10.1016/j.metabol.2007.07.013

    Article  CAS  PubMed  Google Scholar 

  56. Ferraro PM, Taylor EN, Gambaro G, Curhan GC (2013) Soda and other beverages and the risk of kidney stones. Clin J Am Soc Nephrol 8(8):1389–1395. https://doi.org/10.2215/CJN.11661112

    Article  PubMed  PubMed Central  Google Scholar 

  57. Furman D, Chang J, Lartigue L, Bolen CR, Haddad F, Gaudilliere B et al (2017) Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nat Med 23(2):174–184. https://doi.org/10.1038/nm.4267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu L, Meng J, Shen Q, Zhang Y, Pan S, Chen Z et al (2017) Caffeine inhibits hypothalamic A1R to excite oxytocin neuron and ameliorate dietary obesity in mice. Nat Commun 8(1). https://doi.org/10.1038/ncomms15904

  59. Lopes JP, Pliassova A, Cunha RA (2019) The physiological effects of caffeine on synaptic transmission and plasticity in the mouse hippocampus selectively depend on adenosine A(1) and A(2A) receptors. Biochem Pharmacol 166:313–321. https://doi.org/10.1016/j.bcp.2019.06.008

    Article  CAS  PubMed  Google Scholar 

  60. Moustafa F, Feldman SR (2014) A review of phosphodiesterase-inhibition and the potential role for phosphodiesterase 4-inhibitors in clinical dermatology. Dermatol Online J 20(5). https://doi.org/10.5070/d3205022608

  61. Lebeau PF, Byun JH, Platko K, Saliba P, Sguazzin M, MacDonald ME et al (2022) Caffeine blocks SREBP2-induced hepatic PCSK9 expression to enhance LDLR-mediated cholesterol clearance. Nat Commun 13(1). https://doi.org/10.1038/s41467-022-28240-9

  62. Owolabi J, Olatunji S, Olanrewaju A (2017) Caffeine and cannabis effects on vital neurotransmitters and enzymes in the brain tissue of juvenile experimental rats. Ann Neurosci 24(2):65–73. https://doi.org/10.1159/000475895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Larsson SC, Woolf B, Gill D (2023) Appraisal of the causal effect of plasma caffeine on adiposity, type 2 diabetes, and cardiovascular disease: two sample mendelian randomisation study. BMJ Med 2(1). https://doi.org/10.1136/bmjmed-2022-000335

  64. Ribeiro JA, Sebastião AM (2010) Caffeine and adenosine. J Alzheimers Dis 20(s1). https://doi.org/10.3233/jad-2010-1379

  65. Chen J-F, Eltzschig HK, Fredholm BB (2013) Adenosine receptors as drug targets — what are the challenges? Nat Rev Drug Discovery 12(4):265–286. https://doi.org/10.1038/nrd3955

    Article  CAS  PubMed  Google Scholar 

  66. Fredholm BB, IJzerman AP, Jacobson KA, Klotz K-N, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53(4):527–552

    CAS  PubMed  Google Scholar 

  67. Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller CE (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors—an update. Pharmacol Rev 63(1):1–34. https://doi.org/10.1124/pr.110.003285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen J-F, Yu L, Shen H-Y, He J-C, Wang X, Zheng R (2010) What knock-out animals tell us about the effects of caffeine. J Alzheimers Dis 20(s1):S17–S24. https://doi.org/10.3233/jad-2010-1403

    Article  CAS  PubMed  Google Scholar 

  69. Fredholm BB, Yang J, Wang Y (2017) Low, but not high, dose caffeine is a readily available probe for adenosine actions. Mol Aspects Med 55:20–25. https://doi.org/10.1016/j.mam.2016.11.011

    Article  CAS  PubMed  Google Scholar 

  70. Johansson B, Dunwiddie LHTV, Masino SA, Poelchen W, Giménez-Llort L, Escorihuela RM, Fernández-Teruel A, Wiesenfeld-Hallin Z, Xu XJ, Hårdemark A, Betsholtz C, Herlenius E, Fredholm BB (2001) Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc Natl Acad Sci U S A 98(16):9407–9412. https://doi.org/10.1073/pnas.161292398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Oishi Y, Huang Z-L, Fredholm BB, Urade Y, Hayaishi O (2008) Adenosine in the tuberomammillary nucleus inhibits the histaminergic system via A1 receptors and promotes non-rapid eye movement sleep. Proc Natl Acad Sci U S A 105(50):19992–19997. https://doi.org/10.1073/pnas.0810926105

    Article  PubMed  PubMed Central  Google Scholar 

  72. Draper-Joyce CJ, Bhola R, Wang J, Bhattarai A, Nguyen ATN, Cowie-Kent I et al (2021) Positive allosteric mechanisms of adenosine A1 receptor-mediated analgesia. Nature 597(7877):571–576. https://doi.org/10.1038/s41586-021-03897-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Allard B, Jacoberger-Foissac C, Cousineau I, Bareche Y, Buisseret L, Chrobak P et al (2023) Adenosine A2A receptor is a tumor suppressor of NASH-associated hepatocellular carcinoma. Cell Rep Med 4(9). https://doi.org/10.1016/j.xcrm.2023.101188

  74. Ishibashi K, Miura Y, Wagatsuma K, Toyohara J, Ishiwata K, Ishii K (2022) Adenosine A2A receptor occupancy by caffeine after coffee intake in Parkinson’s disease. Mov Disord 37(4):853–857. https://doi.org/10.1002/mds.28897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Canas PM, Porciuncula LO, Cunha GM, Silva CG, Machado NJ, Oliveira JM et al (2009) Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by beta-amyloid peptides via p38 mitogen-activated protein kinase pathway. J Neurosci 29(47):14741–14751. https://doi.org/10.1523/JNEUROSCI.3728-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Huang Z-L, Zhang Z, Qu W-M (2014) Roles of adenosine and its receptors in sleep–wake regulation. Adenosine receptors in neurology and psychiatry. Int Rev Neurobiol 349–371

  77. El Yacoubi MLC, Parmentier M, Bertorelli R, Ongini E, Costentin J, Vaugeois JM (2001) Adenosine A2A receptor antagonists are potential antidepressants: evidence based on pharmacology and A2A receptor knockout mice. Br J Pharmacol 134(1):68–77. https://doi.org/10.1038/sj.bjp.0704240

    Article  CAS  PubMed  Google Scholar 

  78. Kaster MP, Machado NJ, Silva HB, Nunes A, Ardais AP, Santana M et al (2015) Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress. Proc  Nat Acad Sci 112(25):7833–8. https://doi.org/10.1073/pnas.1423088112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fredholm BB, Chen J-F, Masino SA, Vaugeois J-M (2005) Actions of adenosine at its receptors in the CNS: insights from knockouts and drugs. Annu Rev Pharmacol Toxicol 45(1):385–412. https://doi.org/10.1146/annurev.pharmtox.45.120403.095731

    Article  CAS  PubMed  Google Scholar 

  80. Mizuno Y, Kondo T (2013) Adenosine A2A receptor antagonist istradefylline reduces daily OFF time in Parkinson’s disease. Mov Disord 28(8):1138–1141. https://doi.org/10.1002/mds.25418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chen J-F, Cunha RA (2020) The belated US FDA approval of the adenosine A2A receptor antagonist istradefylline for treatment of Parkinson’s disease. Purinergic Signalling 16(2):167–174. https://doi.org/10.1007/s11302-020-09694-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hursel R, Viechtbauer W, Dulloo A, Tremblay A, Tappy L, Rumpler W et al (2011) The effects of catechin rich teas and caffeine on energy expenditure and fat oxidation: a meta-analysis. Obes Rev 12(7). https://doi.org/10.1111/j.1467-789X.2011.00862.x

  83. Gnad T, Scheibler S, von Kügelgen I, Scheele C, Kilić A, Glöde A et al (2014) Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors. Nature 516(7531):395–399. https://doi.org/10.1038/nature13816

    Article  CAS  PubMed  Google Scholar 

  84. Cai Y, Chen X, Yi B, Li J, Wen Z (2022) Pathophysiology roles for adenosine 2A receptor in obesity and related diseases. Obes Rev 23(10). https://doi.org/10.1111/obr.13490

  85. Velickovic K, Wayne D, Leija HAL, Bloor I, Morris DE, Law J et al (2019) Caffeine exposure induces browning features in adipose tissue in vitro and in vivo. Sci Rep 9(1). https://doi.org/10.1038/s41598-019-45540-1

  86. Van Schaik L, Kettle C, Green R, Irving HR, Rathner JA (2021) Effects of caffeine on brown adipose tissue thermogenesis and metabolic homeostasis: a review. Front NeuroSci 15. https://doi.org/10.3389/fnins.2021.621356

  87. Cerri M, Morrison S (2005) Activation of lateral hypothalamic neurons stimulates brown adipose tissue thermogenesis. Neuroscience 135(2):627–638. https://doi.org/10.1016/j.neuroscience.2005.06.039

    Article  CAS  PubMed  Google Scholar 

  88. Morrison SF, Nakamura K (2011) Central neural pathways for thermoregulation. Front Biosci (Landmark Ed) 16(1):74–104. https://doi.org/10.2741/3677

    Article  CAS  PubMed  Google Scholar 

  89. Dulloo A, Seydoux J, Girardier L (1991) Peripheral mechanisms of thermogenesis induced by ephedrine and caffeine in brown adipose tissue. Int J Obes 15(5):317–326

    CAS  PubMed  Google Scholar 

  90. Sacramento JF, Martins FO, Rodrigues T, Matafome P, Ribeiro MJ, Olea E et al (2020) A (2) adenosine receptors mediate whole-body insulin sensitivity in a prediabetes animal model: primary effects on skeletal muscle. Front Endocrinol (Lausanne) 11:262. https://doi.org/10.3389/fendo.2020.00262

    Article  PubMed  Google Scholar 

  91. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84(1):277–359. https://doi.org/10.1152/physrev.00015.2003

    Article  CAS  PubMed  Google Scholar 

  92. Wu J, Boström P, Sparks LM, Ye L, Choi JH, Giang A-H et al (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150(2):366–376. https://doi.org/10.1016/j.cell.2012.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fedorenko A, Lishko PV, Kirichok Y (2012) Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151(2):400–413. https://doi.org/10.1016/j.cell.2012.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zeng X, Ye M, Resch JM, Jedrychowski MP, Hu B, Lowell BB et al (2019) Innervation of thermogenic adipose tissue via a calsyntenin 3β–S100b axis. Nature 569(7755):229–235. https://doi.org/10.1038/s41586-019-1156-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cero C, Lea HJ, Zhu KY, Shamsi F, Tseng Y-H, Cypess AM (2021) β3-Adrenergic receptors regulate human brown/beige adipocyte lipolysis and thermogenesis. JCI Insight 6(11). https://doi.org/10.1172/jci.insight.139160

  96. Mund RA, Frishman WH (2013) Brown adipose tissue thermogenesis: β3-adrenoreceptors as a potential target for the treatment of obesity in humans. Cardiol Rev 21(6):265–269. https://doi.org/10.1097/CRD.0b013e31829cabff

    Article  PubMed  Google Scholar 

  97. Bartness T, Vaughan C, Song C (2010) Sympathetic and sensory innervation of brown adipose tissue. Int J Obes 34(S1):S36–S42. https://doi.org/10.1038/ijo.2010.182

    Article  Google Scholar 

  98. Oelkrug R, Polymeropoulos ET, Jastroch M (2015) Brown adipose tissue: physiological function and evolutionary significance. J Comp Physiol B 185(6):587–606. https://doi.org/10.1007/s00360-015-0907-7

    Article  CAS  PubMed  Google Scholar 

  99. Collins S (2012) β-Adrenoceptor signaling networks in adipocytes for recruiting stored fat and energy expenditure. Front Endocrinol 2. https://doi.org/10.3389/fendo.2011.00102

  100. Cao W, Daniel KW, Robidoux J, Puigserver P, Medvedev AV, Bai X et al (2004) p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol Cell Biol 24(7):3057–3067. https://doi.org/10.1128/mcb.24.7.3057-3067.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92(6):829–839. https://doi.org/10.1016/s0092-8674(00)81410-5

    Article  CAS  PubMed  Google Scholar 

  102. Schnuck JK, Gould LM, Parry HA, Johnson MA, Gannon NP, Sunderland KL et al (2017) Metabolic effects of physiological levels of caffeine in myotubes. J Physiol Biochem 74(1):35–45. https://doi.org/10.1007/s13105-017-0601-1

    Article  CAS  PubMed  Google Scholar 

  103. Vaughan RA, Garcia-Smith R, Bisoffi M, Trujillo KA, Conn CA (2012) Effects of caffeine on metabolism and mitochondria biogenesis in rhabdomyosarcoma cells compared with 2,4-dinitrophenol. Nutrition and Metabolic Insights 5. https://doi.org/10.4137/nmi.S10233

  104. Levine A, Morley J (1983) Effect of intraventricular adenosine on food intake in rats. Pharmacol Biochem Behav 19(1):23–26. https://doi.org/10.1016/0091-3057(83)90305-2

    Article  CAS  PubMed  Google Scholar 

  105. Johnson PM, Kenny PJ (2010) Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci 13(5):635–641. https://doi.org/10.1038/nn.2519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Di Micioni MV, Pucci M, Giusepponi ME, Romano A, Lambertucci C, Volpini R et al (2019) Regulation of adenosine A(2A) receptor gene expression in a model of binge eating in the amygdaloid complex of female rats. J Psychopharmacol 33(12):1550–1561. https://doi.org/10.1177/0269881119845798

    Article  CAS  Google Scholar 

  107. Di Micioni MV, Cifani C, Lambertucci C, Volpini R, Cristalli G, Massi M (2012) A2A adenosine receptor agonists reduce both high-palatability and low-palatability food intake in female rats. Behav Pharmacol 23(5–6):567–574. https://doi.org/10.1097/FBP.0b013e3283566a60

    Article  CAS  Google Scholar 

  108. Bakuradze T, Montoya Parra GA, Riedel A, Somoza V, Lang R, Dieminger N et al (2014) Four-week coffee consumption affects energy intake, satiety regulation, body fat, and protects DNA integrity. Food Res Int 63:420–427. https://doi.org/10.1016/j.foodres.2014.05.032

    Article  CAS  Google Scholar 

  109. van Galen KA, ter Horst KW, Serlie MJ (2021) Serotonin, food intake, and obesity. Obes Rev 22(7). https://doi.org/10.1111/obr.13210

  110. Wren A, Small C, Ward H, Murphy K, Dakin C, Taheri S et al (2000) The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 141(11):4325–4328. https://doi.org/10.1210/endo.141.11.7873

    Article  CAS  PubMed  Google Scholar 

  111. Astrup A, Toubro S, Cannon S, Hein P, Madsen J (1991) Thermogenic synergism between ephedrine and caffeine in healthy volunteers: a double-blind, placebo-controlled study. Metabolism 40(3):323–329. https://doi.org/10.1016/0026-0495(91)90117-f

    Article  CAS  PubMed  Google Scholar 

  112. Racotta IS, Leblanc J, Richard D (1994) The effect of caffeine on food intake in rats: involvement of corticotropin-releasing factor and the sympatho-adrenal system. Pharmacol Biochem Behav 48(4):887–892. https://doi.org/10.1016/0091-3057(94)90196-1

    Article  CAS  PubMed  Google Scholar 

  113. Valadas JS, Batalha VL, Ferreira DG, Gomes R, Coelho JE, Sebastiao AM et al (2012) Neuroprotection afforded by adenosine A2A receptor blockade is modulated by corticotrophin-releasing factor (CRF) in glutamate injured cortical neurons. J Neurochem 123(6):1030–1040. https://doi.org/10.1111/jnc.12050

    Article  CAS  PubMed  Google Scholar 

  114. Yang L, Qi Y, Yang Y (2015) Astrocytes control food intake by inhibiting AGRP neuron activity via adenosine A1 receptors. Cell Rep 11(5):798–807. https://doi.org/10.1016/j.celrep.2015.04.002

    Article  CAS  PubMed  Google Scholar 

  115. Kratz M, von Eckardstein A, Fobker M, Buyken A, Posny N, Schulte H et al (2002) The impact of dietary fat composition on serum leptin concentrations in healthy nonobese men and women. J Clin Endocrinol Metab 87(11):5008–5014. https://doi.org/10.1210/jc.2002-020496

    Article  CAS  PubMed  Google Scholar 

  116. JM. F, (2003) A war on obesity, not the obese. Science. 299(5608):856–858. https://doi.org/10.1126/science.1079856

    Article  CAS  Google Scholar 

  117. Hosoi T, Toyoda K, Nakatsu K, Ozawa K (2014) Caffeine attenuated ER stress-induced leptin resistance in neurons. Neurosci Lett. https://doi.org/10.1016/j.neulet.2014.03.053. 569:23 – 6

    Article  PubMed  Google Scholar 

  118. Hongu N, DS. S (2000) Caffeine, carnitine and choline supplementation of rats decreases body fat and serum leptin concentration as does exercise. J Nutr 130(2):152–157. https://doi.org/10.1093/jn/130.2.152

    Article  CAS  PubMed  Google Scholar 

  119. Yamashita K, Yatsuya H, Muramatsu T, Toyoshima H, Murohara T, Tamakoshi K (2012) Association of coffee consumption with serum adiponectin, leptin, inflammation and metabolic markers in Japanese workers: a cross-sectional study. Nutr Diabetes 2(4):e33. https://doi.org/10.1038/nutd.2012.6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lagiou PSL, Mantzoros CS, Trichopoulos D, Hsieh CC, Trichopoulou A (1999) Hormonal, lifestyle, and dietary factors in relation to leptin among elderly men. Ann Nutr Metab 43(1):23–29. https://doi.org/10.1159/000012763

    Article  CAS  PubMed  Google Scholar 

  121. Gavrieli A, Yannakoulia M, Fragopoulou E, Margaritopoulos D, Chamberland JP, Kaisari P et al (2011) Caffeinated coffee does not acutely affect energy intake, appetite, or inflammation but prevents serum cortisol concentrations from falling in healthy men1–4. J Nutr 141(4):703–707. https://doi.org/10.3945/jn.110.137323

    Article  CAS  PubMed  Google Scholar 

  122. Gavrieli A, Karfopoulou E, Kardatou E, Spyreli E, Fragopoulou E, Mantzoros C et al (2013) Effect of different amounts of coffee on dietary intake and appetite of normal-weight and overweight/obese individuals. Obesity 21(6):1127–1132. https://doi.org/10.1002/oby.20190

    Article  CAS  PubMed  Google Scholar 

  123. Greenberg JA, Geliebter A (2012) Coffee, hunger, and peptide YY. J Am College Nutrit 31(3):160–6. https://doi.org/10.1080/07315724.2012.10720023

    Article  CAS  Google Scholar 

  124. Sweeney P, Levack R, Watters J, Xu Z, Yang Y (2016) Caffeine increases food intake while reducing anxiety-related behaviors. Appetite 101:171–177. https://doi.org/10.1016/j.appet.2016.03.013

    Article  PubMed  Google Scholar 

  125. Kim HJ, Yoon BK, Park H, Seok JW, Choi H, Yu JH et al (2016) Caffeine inhibits adipogenesis through modulation of mitotic clonal expansion and the AKT/GSK3 pathway in 3T3-L1 adipocytes. BMB Rep 49(2):111–115. https://doi.org/10.5483/BMBRep.2016.49.2.128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Su S-H, Shyu H-W, Yeh Y-T, Chen K-M, Yeh H, Su S-J (2013) Caffeine inhibits adipogenic differentiation of primary adipose-derived stem cells and bone marrow stromal cells. Toxicol in Vitro 27(6):1830–1837. https://doi.org/10.1016/j.tiv.2013.05.011

    Article  CAS  PubMed  Google Scholar 

  127. Kim HY, Lee MY, Park HM, Park YK, Shon JC, Liu K-H et al (2015) Urine and serum metabolite profiling of rats fed a high-fat diet and the anti-obesity effects of caffeine consumption. Molecules 20(2):3107–3128. https://doi.org/10.3390/molecules20023107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Nakabayashi H, Hashimoto T, Ashida H, Nishiumi S, Kanazawa K (2008) Inhibitory effects of caffeine and its metabolites on intracellular lipid accumulation in murine 3T3-L1 adipocytes. BioFactors 34(4):293–302. https://doi.org/10.3233/BIO-2009-1083

    Article  CAS  PubMed  Google Scholar 

  129. Acheson K, Zahorska-Markiewicz B, Pittet P, Anantharaman K, Jéquier E (1980) Caffeine and coffee: their influence on metabolic rate and substrate utilization in normal weight and obese individuals. Am J Clin Nutr 33(5):989–997. https://doi.org/10.1093/ajcn/33.5.989

    Article  CAS  PubMed  Google Scholar 

  130. Dulloo AG (2011) The search for compounds that stimulate thermogenesis in obesity management: from pharmaceuticals to functional food ingredients. Obes Rev 12(10):866–883. https://doi.org/10.1111/j.1467-789X.2011.00909.x

    Article  CAS  PubMed  Google Scholar 

  131. Kim EY, Kim WK, Oh K-J, Han BS, Lee SC, Bae K-H (2015) Recent advances in proteomic studies of adipose tissues and adipocytes. Int J Mol Sci 16(3):4581–4599. https://doi.org/10.3390/ijms16034581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhu X, Yang L, Xu F, Lin L, Zheng G (2017) Combination therapy with catechins and caffeine inhibits fat accumulation in 3T3-L1 cells. Experimental Therapeutic Med 13(2):688–694. https://doi.org/10.3892/etm.2016.3975

    Article  CAS  Google Scholar 

  133. Kong L, Xu M, Qiu Y, Liao M, Zhang Q, Yang L et al (2021) Chlorogenic acid and caffeine combination attenuates adipogenesis by regulating fat metabolism and inhibiting adipocyte differentiation in 3T3-L1 cells. J Food Biochem 45(7). https://doi.org/10.1111/jfbc.13795

  134. Daval M, Diot-Dupuy F, Bazin R, Hainault I, Viollet Bt, Vaulont S et al (2005) Anti-lipolytic action of AMP-activated protein kinase in rodent adipocytes. J Biol Chem 280(26):25250–25257. https://doi.org/10.1074/jbc.M414222200

    Article  CAS  PubMed  Google Scholar 

  135. Deng X, Dong Q, Bridges D, Raghow R, Park EA, Elam MB (2015) Docosahexaenoic acid inhibits proteolytic processing of sterol regulatory element-binding protein-1c (SREBP-1c) via activation of AMP-activated kinase. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of lipids. 1851(12):1521–1529. https://doi.org/10.1016/j.bbalip.2015.08.007

  136. Quan HY, Kim DY, Chung SH (2013) Caffeine attenuates lipid accumulation via activation of AMP-activated protein kinase signaling pathway in HepG2 cells. BMB Rep 46(4):207–212. https://doi.org/10.5483/BMBRep.2013.46.4.153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zheng G, Qiu Y, Zhang Q-F, Li D (2014) Chlorogenic acid and caffeine in combination inhibit fat accumulation by regulating hepatic lipid metabolism-related enzymes in mice. Br J Nutr 112(6):1034–1040. https://doi.org/10.1017/s0007114514001652

    Article  CAS  PubMed  Google Scholar 

  138. Zheng X, Dai W, Chen X, Wang K, Zhang W, Liu L et al (2015) Caffeine reduces hepatic lipid accumulation through regulation of lipogenesis and ER stress in zebrafish larvae. J Biomed Sci 22(1). https://doi.org/10.1186/s12929-015-0206-3

  139. Vandenberghe CS-PV, Courchesne-Loyer A, Hennebelle M, Castellano CA, Cunnane SC (2017) Caffeine intake increases plasma ketones: an acute metabolic study in humans. Can J Physiol Pharmacol 95(4):455–458. https://doi.org/10.1139/cjpp-2016-0338

    Article  CAS  PubMed  Google Scholar 

  140. Mougios VRS, Petridou A, Nikolaidis MG (2003) Duration of coffee- and exercise-induced changes in the fatty acid profile of human serum. J Appl Physiol 94(2):476–484. https://doi.org/10.1152/japplphysiol.00624.2002

    Article  CAS  PubMed  Google Scholar 

  141. DeOliveira CC, Paiva Caria CRe, Ferreira Gotardo EM, Ribeiro ML, Gambero A (2017) Role of A1 and A2A adenosine receptor agonists in adipose tissue inflammation induced by obesity in mice. Eur J Pharmacol 799:154–159. https://doi.org/10.1016/j.ejphar.2017.02.017

    Article  CAS  PubMed  Google Scholar 

  142. Stohs SJ, Badmaev V (2016) A review of natural stimulant and non-stimulant thermogenic agents. Phytother Res 30(5):732–740. https://doi.org/10.1002/ptr.5583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Preti D, Baraldi PG, Moorman AR, Borea PA, Varani K (2015) History and perspectives of A2AAdenosine receptor antagonists as potential therapeutic agents. Med Res Rev 35(4):790–848. https://doi.org/10.1002/med.21344

    Article  CAS  PubMed  Google Scholar 

  144. Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O et al (2008) Dynamics of fat cell turnover in humans. Nature 453(7196):783–787. https://doi.org/10.1038/nature06902

    Article  CAS  PubMed  Google Scholar 

  145. Ding L, Zhang F, Zhao M-X, Ren X-S, Chen Q, Li Y-H et al (2016) Reduced lipolysis response to adipose afferent reflex involved in impaired activation of adrenoceptor-cAMP-PKA-hormone sensitive lipase pathway in obesity. Sci Rep 6(1). https://doi.org/10.1038/srep34374

  146. Greenberg JA, Boozer CN, Geliebter A (2006) Coffee, diabetes, and weight control. Am J Clin Nutr 84(4):682–693. https://doi.org/10.1093/ajcn/84.4.682

    Article  CAS  PubMed  Google Scholar 

  147. Tauler P, Martínez S, Moreno C, Monjo M, Martínez P, Aguiló A (2013) Effects of caffeine on the inflammatory response induced by a 15-km run competition. Med Sci Sports Exerc 45(7):1269–1276. https://doi.org/10.1249/MSS.0b013e3182857c8a

    Article  CAS  PubMed  Google Scholar 

  148. Bartness TJ, Liu Y, Shrestha YB, Ryu V (2014) Neural innervation of white adipose tissue and the control of lipolysis. Front Neuroendocr 35(4):473–493. https://doi.org/10.1016/j.yfrne.2014.04.001

    Article  CAS  Google Scholar 

  149. Kolditz C-I, Langin D (2010) Adipose tissue lipolysis. Current opinion in Clinical Nutrition and Metabolic Care. 13(4):377–381. https://doi.org/10.1097/MCO.0b013e32833bed6a

    Article  CAS  PubMed  Google Scholar 

  150. Margriet S, Westerterp-Plantenga MPGML, Eva MR, Kovacs (2005) Body weight loss and weight maintenance in relation to habitual caffeine intake and green tea supplementation. Obes Res 13(7):1195–1204. https://doi.org/

    Article  Google Scholar 

  151. Zhang S, Takano J, Murayama N, Tominaga M, Abe T, Park I et al (2020) Subacute ingestion of caffeine and oolong tea increases fat oxidation without affecting energy expenditure and sleep architecture: a randomized, placebo-controlled, double-blinded cross-over trial. Nutrients 12(12). https://doi.org/10.3390/nu12123671

  152. Ramírez-Maldonado M, Jurado-Fasoli L, del Coso J, Ruiz R, Amaro-Gahete J FJ (2021) Caffeine increases maximal fat oxidation during a graded exercise test: is there a diurnal variation? J Int Soc Sports Nutr 18(1). https://doi.org/10.1186/s12970-020-00400-6

  153. Collado-Mateo D, Lavín-Pérez AM, Merellano-Navarro E, Coso JD (2020) Effect of acute caffeine intake on the fat oxidation rate during exercise: a systematic review and meta-analysis. Nutrients 12(12). https://doi.org/10.3390/nu12123603

  154. Boswell-Smith V, Spina D, Page CP (2006) Phosphodiesterase inhibitors. Br J Pharmacol 147(S1):S252–S7. https://doi.org/10.1038/sj.bjp.0706495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Escalante G, Bryan P, Rodriguez J (2018) Effects of a topical lotion containing aminophylline, caffeine, yohimbe, l-carnitine, and gotu kola on thigh circumference, skinfold thickness, and fat mass in sedentary females. J Cosmet Dermatol 18(4):1037–1043. https://doi.org/10.1111/jocd.12801

    Article  PubMed  PubMed Central  Google Scholar 

  156. Montoya GA, Bakuradze T, Eirich M, Erk T, Baum M, Habermeyer M et al (2014) Modulation of 3′,5′-cyclic AMP homeostasis in human platelets by coffee and individual coffee constituents. Br J Nutr 112(9):1427–1437. https://doi.org/10.1017/s0007114514002232

    Article  CAS  PubMed  Google Scholar 

  157. Horrigan LA, Kelly JP, Connor TJ (2006) Immunomodulatory effects of caffeine: friend or foe? Pharmacol Ther 111(3):877–892. https://doi.org/10.1016/j.pharmthera.2006.02.002

    Article  CAS  PubMed  Google Scholar 

  158. Martin PT, Koshland DEJ (1992) Regulation of neurosecretory habituation in PC12 cells: parallel pathways used by cAMP and calcium. Proc Natl Acad Sci USA 89(21):10257–10261. https://doi.org/10.1073/pnas.89.21.10257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zhang SJ, Li YF, Wang GE, Tan RR, Tsoi B, Mao GW et al (2015) Caffeine ameliorates high energy diet-induced hepatic steatosis: sirtuin 3 acts as a bridge in the lipid metabolism pathway. Food Funct 6(8):2578–2587. https://doi.org/10.1039/c5fo00247h

    Article  CAS  PubMed  Google Scholar 

  160. Koot P, Deurenberg P (1995) Comparison of changes in energy expenditure and body temperatures after caffeine consumption. Ann Nutr Metab 39(3):135–142. https://doi.org/10.1159/000177854

    Article  CAS  PubMed  Google Scholar 

  161. Kajimura S, Spiegelman BM, Seale P (2015) Brown and beige fat: physiological roles beyond heat generation. Cell Metabol 22(4):546–559. https://doi.org/10.1016/j.cmet.2015.09.007

    Article  CAS  Google Scholar 

  162. Ikeda K, Kang Q, Yoneshiro T, Camporez JP, Maki H, Homma M et al (2017) UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat Med 23(12):1454–1465. https://doi.org/10.1038/nm.4429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kazak L, Chouchani ET, Jedrychowski MP, Erickson B, Shinoda K, Cohen P et al (2015) A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163(3):643–655. https://doi.org/10.1016/j.cell.2015.09.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Vangheluwe P, Raeymaekers L, Dode L, Wuytack F (2005) Modulating sarco(endo)plasmic reticulum Ca2 + ATPase 2 (SERCA2) activity: cell biological implications. Cell Calcium 38(3–4):291–302. https://doi.org/10.1016/j.ceca.2005.06.033

    Article  CAS  PubMed  Google Scholar 

  165. de Smedt H, Eggermont JA, Wuytack F, Parys JB, Van den Bosch L, Missiaen L et al (1991) Isoform switching of the sarco(endo)plasmic reticulum Ca2 + pump during differentiation of BC3H1 myoblasts. J Biol Chem 266(11):7092–7095. https://doi.org/10.1016/s0021-9258(20)89614-8

    Article  PubMed  Google Scholar 

  166. Walker J, Rohm B, Lang R, Pariza M, Hofmann T, Somoza V (2012) Identification of coffee components that stimulate dopamine release from pheochromocytoma cells (PC-12). Food Chem Toxicol 50(2):390–398. https://doi.org/10.1016/j.fct.2011.09.041

    Article  CAS  PubMed  Google Scholar 

  167. Herrmann-Frank ALH, Stephenson DG (1999) Caffeine and excitation-contraction coupling in skeletal muscle: a stimulating story. J Muscle Res Cell Motil 20(2):223–237. https://doi.org/10.1023/a:1005496708505

    Article  CAS  PubMed  Google Scholar 

  168. Ehrlich BE, Kaftan E, Bezprozvannaya S, Bezprozvanny I (1994) The pharmacology of intracellular ca(2+)-release channels. Trends Pharmacol Sci 15(5):145–149. https://doi.org/10.1016/0165-6147(94)90074-4

    Article  CAS  PubMed  Google Scholar 

  169. Chen Y, Zeng X, Huang X, Serag S, Woolf CJ, Spiegelman BM (2017) Crosstalk between KCNK3-mediated ion current and adrenergic signaling regulates adipose thermogenesis and obesity. Cell 171(4):836-48e13. https://doi.org/10.1016/j.cell.2017.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Maus M, Cuk M, Patel B, Lian J, Ouimet M, Kaufmann U et al (2017) Store-operated Ca2+ entry controls induction of lipolysis and the transcriptional reprogramming to lipid metabolism. Cell Metabol 25(3):698–712. https://doi.org/10.1016/j.cmet.2016.12.021

    Article  CAS  Google Scholar 

  171. Wright DC, Geiger PC, Han D-H, Jones TE, Holloszy JO (2007) Calcium induces increases in peroxisome proliferator-activated receptor γ coactivator-1α and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation. J Biol Chem 282(26):18793–18799. https://doi.org/10.1074/jbc.M611252200

    Article  CAS  PubMed  Google Scholar 

  172. Horton R, Rothwell N, Stock M (1988) Chronic inhibition of GABA transaminase results in activation of thermogenesis and brown fat in the rat. Gen Pharmacol 19(3):403–405. https://doi.org/10.1016/0306-3623(88)90037-7

    Article  CAS  PubMed  Google Scholar 

  173. Weerawatanakorn M, He S, Chang C-H, Koh Y-C, Yang M-J, Pan M-H (2023) High gamma-aminobutyric acid (GABA) oolong tea alleviates high-fat diet-induced metabolic disorders in mice. ACS Omega 8(37):33997–34007. https://doi.org/10.1021/acsomega.3c04874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. de Vos WM, Tilg H, Van Hul M, Cani PD (2022) Gut microbiome and health: mechanistic insights. Gut 71(5):1020–1032. https://doi.org/10.1136/gutjnl-2021-326789

    Article  CAS  PubMed  Google Scholar 

  175. Chevalier C, Stojanović O, Colin DJ, Suarez-Zamorano N, Tarallo V, Veyrat-Durebex C et al (2015) Gut microbiota orchestrates energy homeostasis during cold. Cell 163(6):1360–1374. https://doi.org/10.1016/j.cell.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  176. Kang Y, Ren P, Shen X, Kuang X, Yang X, Liu H et al (2023) A newly synbiotic combination alleviates obesity by modulating the gut microbiota–fat axis and inhibiting the hepatic TLR4/NF-κB signaling pathway. Mole Nutrit Food Res  https://doi.org/10.1002/mnfr.202300141

  177. Cowana TE, Palmnäs MSA, Yang J, Bomhof MR, Ardell KL, Reimer RA et al (2014) Chronic coffee consumption in the diet-induced obese rat: impact on gut microbiota and serum metabolomics. J Nutr Biochem 25(4):489–495. https://doi.org/10.1016/j.jnutbio.2013.12.009

    Article  CAS  Google Scholar 

  178. Zhu M-z, Zhou F, Ouyang J, Wang Q-y, Li Y-l, Wu J-l et al (2021) Combined use of epigallocatechin-3-gallate (EGCG) and caffeine in low doses exhibits marked anti-obesity synergy through regulation of gut microbiota and bile acid metabolism. Food Funct 12(9):4105–4116. https://doi.org/10.1039/d0fo01768j

    Article  CAS  PubMed  Google Scholar 

  179. Mills CE, Tzounis X, Oruna-Concha M-J, Mottram DS, Gibson GR, Spencer JPE (2015) In vitro colonic metabolism of coffee and chlorogenic acid results in selective changes in human faecal microbiota growth. Br J Nutr 113(8):1220–1227. https://doi.org/10.1017/s0007114514003948

    Article  CAS  PubMed  Google Scholar 

  180. Kenny DJ, Plichta DR, Shungin D, Koppel N, Hall AB, Fu B et al (2020) Cholesterol metabolism by uncultured human gut bacteria influences host cholesterol level. Cell Host Microbe 28(2):245–257. https://doi.org/10.1016/j.chom.2020.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Johnston KL, Clifford MN, Morgan LM (2003) Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. Am J Clin Nutr 78(4):728–733. https://doi.org/10.1093/ajcn/78.4.728

    Article  CAS  PubMed  Google Scholar 

  182. Cha KH, Song D-G, Kim SM, Pan C-H (2012) Inhibition of gastrointestinal lipolysis by green tea, coffee, and gomchui (Ligularia fischeri) tea polyphenols during simulated digestion. J Agric Food Chem 60(29):7152–7157. https://doi.org/10.1021/jf301047f

    Article  CAS  PubMed  Google Scholar 

  183. Chen L, Wang X-j, Chen J-x, Yang J-c, Ling L, Cai X-B et al (2023) Caffeine ameliorates the metabolic syndrome in diet-induced obese mice through regulating the gut microbiota and serum metabolism. Diabetol Metab Syndr 15(1). https://doi.org/10.1186/s13098-023-00993-3

  184. Duval C, Touche V, Tailleux A, Fruchart J-C, Fievet C, Clavey Vr et al (2006) Niemann–pick C1 like 1 gene expression is down-regulated by LXR activators in the intestine. Biochem Biophys Res Commun 340(4):1259–1263. https://doi.org/10.1016/j.bbrc.2005.12.137

    Article  CAS  PubMed  Google Scholar 

  185. Lo Sasso G, Murzilli S, Salvatore L, D’Errico I, Petruzzelli M, Conca P et al (2010) Intestinal specific LXR activation stimulates reverse cholesterol transport and protects from atherosclerosis. Cell Metabol 12(2):187–193. https://doi.org/10.1016/j.cmet.2010.07.002

    Article  CAS  Google Scholar 

  186. Ontawong A, Duangjai A, Muanprasat C, Pasachan T, Pongchaidecha A, Amornlerdpison D et al (2019) Lipid-lowering effects of Coffea arabica pulp aqueous extract in Caco-2 cells and hypercholesterolemic rats. Phytomedicine 52:187–197. https://doi.org/10.1016/j.phymed.2018.06.021

    Article  CAS  PubMed  Google Scholar 

  187. Motta EVS, Arnott RLW, Moran NA (2023) Caffeine consumption helps honey bees fight a bacterial pathogen. Microbiol Spectr 11(3). https://doi.org/10.1128/spectrum.00520-23

  188. McConnell MN, Bakermans C (2023) Nutrients mediate caffeine inhibition of Escherichia coli. Environ Microbiol Rep 15(5):422–425. https://doi.org/10.1111/1758-2229.13165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Yang L, Zhu Y, Zhong S, Zheng G (2020) Astilbin lowers the effective caffeine dose for decreasing lipid accumulation via activating AMPK in high-fat diet‐induced obese mice. J Sci Food Agric 101(2):573–581. https://doi.org/10.1002/jsfa.10669

    Article  CAS  PubMed  Google Scholar 

  190. Xu M, Yang L, Zhu Y, Liao M, Chu L, Li X et al (2019) Collaborative effects of chlorogenic acid and caffeine on lipid metabolism via the AMPKα-LXRα/SREBP-1c pathway in high-fat diet-induced obese mice. Food Funct 10(11):7489–7497. https://doi.org/10.1039/c9fo00502a

    Article  CAS  PubMed  Google Scholar 

  191. Carter BE, Drewnowski A (2012) Beverages containing soluble fiber, caffeine, and green tea catechins suppress hunger and lead to less energy consumption at the next meal. Appetite 59(3):755–761. https://doi.org/10.1016/j.appet.2012.08.015

    Article  CAS  PubMed  Google Scholar 

  192. Ohara T, Muroyama K, Yamamoto Y, Murosaki S (2016) Oral intake of a combination of glucosyl hesperidin and caffeine elicits an anti-obesity effect in healthy, moderately obese subjects: a randomized double-blind placebo-controlled trial. Nutr J 15(1). https://doi.org/10.1186/s12937-016-0123-7

  193. Yoneshiro T, Matsushita M, Hibi M, Tone H, Takeshita M, Yasunaga K et al (2017) Tea catechin and caffeine activate brown adipose tissue and increase cold-induced thermogenic capacity in humans. Am J Clin Nutr 105(4):873–881. https://doi.org/10.3945/ajcn.116.144972

    Article  PubMed  Google Scholar 

  194. Saimaiti A, Zhou DD, Li J, **ong RG, Gan RY, Huang SY et al (2023) Dietary sources, health benefits, and risks of caffeine. Crit Rev Food Sci Nutr 63(29):9648–9666. https://doi.org/10.1080/10408398.2022.2074362

    Article  PubMed  Google Scholar 

  195. Davoodi SH, Hajimiresmaiel SJ, Ajami M, Mohseni-Bandpei A, Ayatollahi SA, Dowlatshahi K et al (2014) Caffeine treatment prevented from weight regain after calorie shifting diet induced weight loss. Iran J Pharm Res 13(2):707–718

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Mielgo-Ayuso J, Marques-Jiménez D, Refoyo I, Del Coso J, León-Guereño P, Calleja-González J (2019) Effect of caffeine supplementation on sports performance based on differences between sexes: a systematic review. Nutrients 11(10). https://doi.org/10.3390/nu11102313

  197. Domaszewski P (2023) Gender differences in the frequency of positive and negative effects after acute caffeine consumption. Nutrients 15(6). https://doi.org/10.3390/nu15061318

  198. Adan A, Prat G, Fabbri M, Sànchez-Turet M (2008) Early effects of caffeinated and decaffeinated coffee on subjective state and gender differences. Prog Neuropsychopharmacol Biol Psychiatry 32(7):1698–1703. https://doi.org/10.1016/j.pnpbp.2008.07.005

    Article  CAS  PubMed  Google Scholar 

  199. Lassen ML, Byrne C, Sheykhzade M, Wissenberg M, Hurry PK, Schmedes AV et al (2022) Sex differences and caffeine impact in adenosine-induced hyperemia. J Nucl Med 63(3):431–437. https://doi.org/10.2967/jnumed.121.261970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Jeukendrup AE, Randell R (2011) Fat burners: nutrition supplements that increase fat metabolism. Obes Rev 12(10):841–851. https://doi.org/10.1111/j.1467-789X.2011.00908.x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Grant No. 82151308 to J.-F.C.); the Research Fund for International Senior Scientists (Grant No. 82150710558 to J.-F.C); Pro-gram Project from the State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University (Grant No. J01-20190101 to J.-F.C); and Key Research Project (Grant No. 2023C03079 to J.-F.C) from Zhejiang Provincial Administration of Science & Technology.

Author information

Authors and Affiliations

Authors

Contributions

Meng Wang conceived and wrote the article. Wei Guo reviewed the content and edited the manuscript. Jiang-Fan Chen provided supervision on the article. All authors critically read and commented on the final manuscript.

Corresponding author

Correspondence to Jiang-Fan Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. 

Informed consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Guo, W. & Chen, JF. Caffeine: a potential mechanism for anti-obesity. Purinergic Signalling (2024). https://doi.org/10.1007/s11302-024-10022-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11302-024-10022-1

Keywords

Navigation