Log in

GC-TripRec: Graph contextualized generative network with adversarial learning for trip recommendation

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Trip recommendation, which aims to recommend a sequence of point-of-interests (POIs) as a trip to visit, is of great importance to location-based service systems. However, due to data sparsity, existing methods lack the ability to capture complex POI correlations in trips, resulting in limited recommendation performance. In this paper, we propose a graph contextualized trip recommendation model GC-TripRec with adversarial learning to take advantage of graph-based representation learning, so that enhanced trip recommendation can be supported by capturing essential knowledge about complex POI correlations in trips. Specifically, it first models pairwise transition relationships by a global transition graph, upon which global-level POI embedding can be captured by a graph convolution network. We further generate trajectory contextualized POI representation via a trip-level embedding method that compromises transition-based and category-based information of POIs in a single trip. In addition, trip representation is learned through Long Short-Term Memory (LSTM) with an adversarial learning task, such that query representation space would be highly overlapped with trip representation space, enabling getting an excellent trip recommendation system. Comprehensive experiments on four real datasets demonstrate that our proposed GC-TripRec significantly outperforms state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Four different datasets, Edinburgh, Glasgow, Osaka and Toronto: public datasets available at paper: Learning Points and Routes to Recommend Trajectories.

References

  1. Gong, Q., Chen, Y., Hu, J., Cao, Q., Hui, P., Wang, X.: Understanding cross-site linking in online social networks. ACM Trans. Web 12(4), 25–12529 (2018)

    Article  Google Scholar 

  2. Preotiuc-Pietro, D., Cohn, T.: Mining User Behaviours: a Study of Check-In Patterns in Location Based Social Networks. In: Web Science 2013 (Co-Located with ECRC), Websci ’13, Paris, France, May 2-4, 2013, pp. 306– 315 (2013)

  3. Bao, J., Zheng, Y., Wilkie, D., Mokbel, M.F.: Recommendations in location-based social networks: a survey. GeoInformatica 19(3), 525–565 (2015)

    Article  Google Scholar 

  4. Werneck, H., Silva, N., Viana, M.C., Mourão, F., Pereira, A.C.M., da Rocha, L.C.: A Survey on Point-Of-Interest Recommendation in Location-Based Social Networks. In: Webmedia, pp. 185–192 (2020)

  5. Xu, J., Zhao, J., Zhou, R., Liu, C., Zhao, P., Zhao, L.: Predicting destinations by a deep learning based approach, vol. 33, pp 651–666 (2019)

  6. Sun, H., Xu, J., Zheng, K., Zhao, P., Chao, P., Zhou, X.: Mfnp: a Meta-Optimized Model for Few-Shot Next Poi Recommendation. In: IJCAI, pp. 3017–3023 (2021)

  7. Song, X., Xu, J., Zhou, R., Liu, C., Zheng, K., Zhao, P., Falkner, N.: Collective spatial keyword search on activity trajectories. GeoInformatica 24(1), 61–84 (2020)

    Article  Google Scholar 

  8. Chen, X., Xu, J., Zhou, R., Zhao, P., Liu, C., Fang, J., Zhao, L.: S2r-tree: a pivot-based indexing structure for semantic-aware spatial keyword search. GeoInformatica 24(1), 3–25 (2020)

    Article  Google Scholar 

  9. Xu, J., Gao, Y., Liu, C., Zhao, L., Ding, Z.: Efficient route search on hierarchical dynamic road networks. Distrib. Parallel Databases 33(2), 227–252 (2015)

    Article  Google Scholar 

  10. Liu, H., Xu, J., Zheng, K., Liu, C., Du, L., Wu, X.: Semantic-aware query processing for activity trajectories. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 283–292 (2017)

  11. Xu, S., Zhang, R., Cheng, W., Xu, J.: Mtlm: a multi-task learning model for travel time estimation. GeoInformatica, 1–17 (2020)

  12. Dai, J., Liu, C., Xu, J., Ding, Z.: On personalized and sequenced route planning. World Wide Web 19(4), 679–705 (2016)

    Article  Google Scholar 

  13. Xu, J., Chen, J., Zhou, R., Fang, J., Liu, C.: On workflow aware location-based service composition for personal trip planning. Futur. Gener. Comput. Syst. 98, 274–285 (2019)

    Article  Google Scholar 

  14. Lim, K., Chan, J., Leckie, C., Karunasekera, S.: Personalized Tour Recommendation Based on User Interests and Points of Interest Visit Durations. In: IJCAI, pp. 1778–1784 (2015)

  15. Lim, K.H., Chan, J., Karunasekera, S., Leckie, C.: Personalized Itinerary Recommendation with Queuing Time Awareness. In: SIGIR, pp. 325–334 (2017)

  16. Brilhante, I.R., de Macêdo, J.A.F., Nardini, F.M., Perego, R., Renso, C.: Where shall we go today?: planning touristic tours with tripbuilder. In: CIKM, pp. 757–762 (2013)

  17. Chen, D., Ong, C.S., **e, L.: Learning Points and Routes to Recommend Trajectories. In: ACM, CIKM, pp. 2227–2232 (2016)

  18. He, J., Qi, J., Ramamohanarao, K.: A Joint Context-Aware Embedding for Trip Recommendations. In: IEEE ICDE, pp. 292–303 (2019)

  19. Sun, H., Xu, J., Zhou, R., Chen, W., Zhao, L., Liu, C.: Hope: a hybrid deep neural model for out-of-town next poi recommendation. World Wide Web 24(5), 1749–1768 (2021)

    Article  Google Scholar 

  20. Zhao, P., Zhu, H., Liu, Y., Xu, J., Li, Z., Zhuang, F., Sheng, V.S., Zhou, X.: Where to Go Next: a Spatio-Temporal Gated Network for Next POI Recommendation. In: AAAI, pp. 5877–5884 (2019)

  21. Dadoun, A., Troncy, R., Ratier, O., Petitti, R.: Location Embeddings for Next Trip Recommendation. In: WWW, pp. 896–903 (2019)

  22. Zhou, F., Wu, H., Trajcevski, G., Khokhar, A.A., Zhang, K.: Semi-supervised trajectory understanding with POI attention for end-to-end trip recommendation. ACM Trans Spatial Algorithms Syst. 6(2), 13–11325 (2020)

    Article  Google Scholar 

  23. Gao, Q., Trajcevski, G., Zhou, F., Zhang, K., Zhong, T., Zhang, F.: Deeptrip: Adversarially understanding human mobility for trip recommendation. In: SIGSPATIAL, pp. 444–447 (2019)

  24. Xu, C., Zhao, P., Liu, Y., Sheng, V.S., Xu, J., Zhuang, F., Fang, J., Zhou, X.: Graph contextualized self-attention network for session-based recommendation. In: IJCAI, pp. 3940–3946 (2019)

  25. Zhang, M., Wang, G., Ren, L., Li, J., Deng, K., Zhang, B.: Metonr: a meta explanation triplet oriented news recommendation model. Knowl.-Based Syst. 238, 107922 (2022)

    Article  Google Scholar 

  26. Choudhury, M.D., Feldman, M., Amer-yahia, S., Golbandi, N., Lempel, R., Yu, C.: Constructing Travel Itineraries from Tagged Geo-Temporal Breadcrumbs. In: WWW, pp. 1083–1084 (2010)

  27. Zhang, C., Liang, H., Wang, K., Sun, J.: Personalized trip recommendation with POI availability and uncertain traveling time. In: ACM, CIKM, pp. 911–920 (2015)

  28. Vansteenwegen, P., Souffriau, W., Berghe, G.V., Oudheusden, D.V.: The city trip planner: An expert system for tourists. Expert Syst. Appl. 38(6), 6540–6546 (2011)

    Article  Google Scholar 

  29. Lu, E.H., Chen, C., Tseng, V.S.: Personalized trip recommendation with multiple constraints by mining user check-in behaviors. In: SIGSPATIAL-GIS, pp. 209–218 (2012)

  30. Gu, J., Song, C., Jiang, W., Wang, X., Liu, M.: Enhancing personalized trip recommendation with attractive routes. In: AAAI, pp. 662–669 (2020)

  31. Bolzoni, P., Helmer, S., Wellenzohn, K., Gamper, J., Andritsos, P.: Efficient itinerary planning with category constraints. In: SIGSPATIAL, pp. 203–212 (2014)

  32. Teng, X., Trajcevski, G., Kim, J., Züfle, A.: Semantically Diverse Path Search. In: MDM, pp. 69–78 (2020)

  33. Rakesh, V., Jadhav, N., Kotov, A., Reddy, C.K.: Probabilistic social sequential model for tour recommendation. In: ACM WSDM, pp. 631–640 (2017)

  34. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  35. Cho, K., Bahdanau, D., Bougares, F., Bengio, Y.: Learning phrase representations using rnn encoder-decoder for statistical machine translation. Computer Science (2014)

  36. Ren, P., Chen, Z., Li, J., Ren, Z., Ma, J., de Rijke, M.: Repeatnet: a repeat aware neural recommendation machine for session-based recommendation. In: AAAI, pp. 4806–4813 (2019)

  37. Hu, X., Xu, J., Wang, W., Li, Z., Liu, A.: A graph embedding based model for fine-grained poi recommendation. Neurocomputing 428, 376–384 (2021)

    Article  Google Scholar 

  38. Song, X., Li, J., Lei, Q., Zhao, W., Chen, Y., Mian, A.: Bi-clkt: Bi-graph contrastive learning based knowledge tracing. Knowl.-Based Syst. 241, 108274 (2022)

    Article  Google Scholar 

  39. Fang, U., Li, J., Akhtar, N., Li, M., Jia, Y.: Gomic: Multi-view image clustering via self-supervised contrastive heterogeneous graph co-learning. World Wide Web, 1–17 (2022)

  40. Xu, C., Zhao, W., Zhao, J., Guan, Z., Song, X., Li, J.: Uncertainty-aware multi-view deep learning for internet of things applications. IEEE Transactions on Industrial Informatics (2022)

  41. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. ar**v:1609.02907 (2016)

  42. Zhu, T., Sun, L., Chen, G.: Graph-based embedding smoothing for sequential recommendation. IEEE Transactions on Knowledge and Data Engineering (2021)

  43. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)

  44. Tolstikhin, I., Bousquet, O., Gelly, S., Schoelkopf, B.: Wasserstein auto-encoders. ar**v:1711.01558 (2017)

  45. Zhao, J., Kim, Y., Zhang, K., Rush, A., LeCun, Y.: Adversarially regularized autoencoders. In: International Conference on Machine Learning, pp. 5902–5911 (2018)

  46. Thomee, B., Shamma, D.A., Friedland, G., Elizalde, B., Ni, K., Poland, D., Borth, D., Li, L.: YFCC100m: the new data in multimedia research. Commun. ACM 59(2), 64–73 (2016)

    Article  Google Scholar 

Download references

Funding

The funding concludes the National Natural Science Foundation of China (No. 62102277), Natural Science Foundation of Jiangsu Province (BK20210703).

Author information

Authors and Affiliations

Authors

Contributions

**yi Zhao wrote the main manuscript text. Junhua Fang, **fu Chao, Bo Ning and Ruoqian Zhang participated in model design and technical discussion.

Corresponding authors

Correspondence to Junhua Fang, **fu Chao, Bo Ning or Ruoqian Zhang.

Ethics declarations

Competing interests

We declare that we have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Special Issue on Spatiotemporal Data Management and Analytics for Recommender Systems Guest Editors: Shuo Shang, **angliang Zhang and Panos Kalnis

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Fang, J., Chao, P. et al. GC-TripRec: Graph contextualized generative network with adversarial learning for trip recommendation. World Wide Web 26, 2291–2310 (2023). https://doi.org/10.1007/s11280-022-01127-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-022-01127-x

Keywords

Navigation