Log in

9-Elements Uniformly Circular, Planar, and Linear Arrays Antenna Design for 5G New Radio of Satellite Communications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Multi-element array antenna design plays a vital role in digital wireless communications, present fifth-generation mobile communications, and non-terrestrial network or satellite communications. The aim and objective of this research are to differentiate the radiation characteristics on uniformly circular, planar, and linear arrays with centrally-fed microstrip patched antenna equally using 9-element array components. To improve the performance with high power transmission, reduced power consumption of user equipment, and enhanced spectral efficiencies antenna arrays are used as important components. The basic design theory and techniques are described and proposed. In this paper, 12 Giga Hertz are proposed in the design work of uniformly circular, planar, and linear array antenna systems operating frequency. They are typically focused on two main design objectives here: the radius of the array is a quarter wavelength and spacing between centers of arrays is the half wavelength of center frequency respectively. This research presents and demonstrates state-of-the-art uniform circular, planar, and linear arrays for mm-wave mobile stations, base stations, and low Earth orbit satellites with an emphasis on microstrip patched and circular shape type arrays. In this work, the performance is analyzed for 3 different types of antennas and a satisfactory performance is made possible by the exploitation of specific bandwidths to operate at a given signal-to-noise ratio as observed from Shannon’s theoretical capacities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Data Availability

The data that support the findings of this research are available from the corresponding author upon reasonable request.

References

  1. Liu, Y.& Moayeri, N. (2017). Wireless activities in the 2 GHz radio bands in industrial plants. In Technical Note (NIST TN), National Institute of Standards and Technology, Gaithersburg, MD. https://doi.org/10.6028/NIST.TN.1972

  2. Helander, J., Zhao, K., Ying, Z., & Sjoberg, D. (2015). Performance analysis of millimeter-wave phased array antennas in cellular handsets. IEEE Antennas and Wireless Propagation Letters, 15, 504–507. https://doi.org/10.1109/LAWP.2015.2455040

    Article  Google Scholar 

  3. Muttiah, R. (2023). Satellite constellation design for 5G wireless networks of mobile communications. International Journal of Satellite Communications and Networking. https://doi.org/10.1002/sat.1477

    Article  Google Scholar 

  4. ITU-T K-Series Recommendations, Supplement 16, July (2022).

  5. Pi, Z., & Khan, F. (2011). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazines, 49(6), 101–107. https://doi.org/10.1109/MCOM.2011.5783993

    Article  Google Scholar 

  6. Gutierrez, F., Agarwal, S., Parrish, K., & Rappaport, T. S. (2009). On-chip integrated antenna structures in CMOS for 60 GHz WPAN systems. IEEE Journal on Selected Areas in Communications, 27(8), 1367–1378. https://doi.org/10.1109/JSAC.2009.091007

    Article  Google Scholar 

  7. Rappaport, T. S., Ben-Dor, E., Murdock, J. N., & Qiao, Y., (2012). 38 GHz and 60 GHz Angle-dependent propagation for cellular & peer-to-peer wireless communications. In Proceedings of IEEE International Conference on Communications, ICC 2012, pp. 4568–4573. https://doi.org/10.1109/ICC.2012.6363891

  8. Rusek, F., Persson, D., Lau, B., Larsson, E., Marzetta, T., Edfors, O., & Tufvesson, F. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60. https://doi.org/10.1109/MSP.2011.2178495

    Article  Google Scholar 

  9. Qingling Z., & Li, J., (2006). Rain attenuation in millimeter wave ranges. In 2006 7th international symposium on antennas, propagation and EM Theory, pp. 1–4, 2006, https://doi.org/10.1109/ISAPE.2006.353538

  10. Lavor, O. P., & Fernandes, H. C. C. (2015). Design of microstrip antennas arrays with circular patch at frequency of 2.5 GHZ. Journal of Communications AND Information Systems. https://doi.org/10.14209/JCIS.2015.14

    Article  Google Scholar 

  11. Liu, Y. X., Kang, E. T., Neoh, K. G., Zhang, J. F., Cui, C. Q., & Lim, T. B. (1999). Surface graft copolymerization enhanced adhesion of an epoxy-based printed circuit board substrate (FR-4) to copper. IEEE Transactions on Advanced Packaging, 22(2), 214–220.

    Article  Google Scholar 

  12. Baudha, S., & Kumar, V. D. (2014). Miniaturized dual broadband printed slot antenna with parasitic slot and patch. Microwave and Optical Technology Letters, 56(10), 2260–2265.

    Article  Google Scholar 

  13. Caloz, C., & Itoh, T. (2005). Electromagnetic metamaterials: Transmission line theory and microwave applications. Wiley-IEEE Press.

    Book  Google Scholar 

  14. Schaubert, D. H., Pozar, D. M., & Adrian, A. (1989). Effect of microstrip antenna substrate thickness and permittivity: Comparison of theories with experiment. IEEE Transactions on Antennas and Propagation, 37(6), 677–682.

    Article  Google Scholar 

  15. Herraiz-Martinez, F. J., Zamora, G., Paredes, F., Martin, F., & Bonache, J. (2011). Multiband printed monopole antennas loaded with OCSRRs for PANs and WLANs. IEEE Antennas and Wireless Propagation Letters, 10, 1528–1531.

    Article  Google Scholar 

  16. Gautam, A. K., Kumar, L., Kanaujia, B. K., & Rambabu, K. (2016). Design of compact F-shaped slot triple-band antenna for WLAN/WiMAX applications. IEEE Transactions on Antennas and Propagation, 64(3), 1101–1105.

    Article  Google Scholar 

  17. Balashanmugam, T., Baladhandapani, A. D., Selvakumaran, P. R., Ramachandran, D., Muthuvel, S. K., Sivaraj, P., & Mamo, S. A. (2022). Effect of substrate material on the electromagnetic properties of the photolithography printed antenna. Advances in Materials Science and Engineering, Hindawi, 2022, 12. https://doi.org/10.1155/2022/7489680

    Article  Google Scholar 

  18. Ioannides, P., & Balanis, C. (2005). Uniform circular and rectangular arrays for adaptive beamforming applications. IEEE Antennas and Wireless Propagation Letters, 2005, 351–354. https://doi.org/10.1109/LAWP.2005.857039

    Article  Google Scholar 

  19. Ioannides, P., & Balanis, C. A. (2005). Uniform circular arrays for smart antennas. IEEE Antennas and Propagation Magazine, 47, 192–206. https://doi.org/10.1109/MAP.2005.1589932

    Article  Google Scholar 

  20. Haupt, R. L. (2008). Optimized element spacing for low sidelobe concentric ring arrays. IEEE Transactions on Antennas and Propagation, 2008, 266–268. https://doi.org/10.1109/TAP.2007.913176

    Article  Google Scholar 

  21. Dessouky, M. I., Sharshar, H., & Albagory, Y. (2006). Efficient sidelobe reduction technique for small-sized concentric circular arrays. Progress in Electromagnetics Research, 65, 187–200. https://doi.org/10.2528/PIER06092503

    Article  Google Scholar 

  22. Balanis, C. A., & Ioannides, P. I. (2007). Introduction to smart antennas (Synthesis Lectures on Antennas) (1st ed.). Springer.

    Book  Google Scholar 

  23. Balanis, C. A. (2016). Antenna theory: Analysis and design (4th ed.). Wiley.

    Google Scholar 

  24. Gross, F. B. (2005). Smart antennas for wireless communications with MATLAB. McGraw Hill.

    Google Scholar 

  25. Gross, F. B. (2015). Smart antennas with MATLAB (2nd ed.). McGraw Hill.

    Google Scholar 

  26. Paul, H., & Young, P. E. (2004). Electronic communication techniques. Pearson/Prentice Hall.

    Google Scholar 

  27. Dalli, A., Zenkouar, L., & Bri, S. (2012). Comparison of circular sector and rectangular patch antenna arrays in C-band. Journal of Electromagnetic Analysis and Applications, 4(11), 457–467. https://doi.org/10.4236/JEMAA.2012.411064

    Article  Google Scholar 

  28. Du, K. L. (2004). Pattern analysis of uniform circular array. IEEE Transaction on Antennas and Propagation, 52(4), 1125–1129. https://doi.org/10.1109/TAP.2004.825802

    Article  Google Scholar 

  29. Joshi, R., Podilchak, S. K., Anagnostou, D. E., Constantinides, C., Ramli, M. N., Lago, H., & Soh, P. J. (2020). Analysis and design of dual-band folded-shorted patch antennas for robust wearable applications. IEEE Open Journal of Antennas and Propagation, 1(2020), 239–252. https://doi.org/10.1109/OJAP.2020.2991343

    Article  Google Scholar 

  30. Hui, H. T., (2011). Antenna Arrays, Electronic and Communication Engineering, National University of Singapore

  31. Natalia, K., (2022). Nikolova Electrical and computer engineering, McMaster University

  32. Raj, T., Mishra, R., Kumar, P., & Kapoor, A. (2023). Advances in MIMO antenna design for 5G: A comprehensive review. Sensors, 23(14), 6329. https://doi.org/10.3390/s23146329

    Article  Google Scholar 

  33. Hartley, R. V. L. (1928). Transmission of information. Bell System Technical Journal, 7(3), 535–563.

    Article  Google Scholar 

  34. Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423.

    Article  MathSciNet  Google Scholar 

Download references

Funding

The author declares that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravandran Muttiah.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest or competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muttiah, R. 9-Elements Uniformly Circular, Planar, and Linear Arrays Antenna Design for 5G New Radio of Satellite Communications. Wireless Pers Commun 136, 947–987 (2024). https://doi.org/10.1007/s11277-024-11304-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-11304-y

Keywords

Navigation