Log in

Development of a Novel Real-Time Environmental Parameters Monitoring System Based on the Internet of Things with LoRa Modules in Underground Mines

  • Research
  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The mining industry relies on extracting valuable minerals through underground mining. Many industries have implemented automation to enhance workplace safety, optimize operations, improve responses to events, and achieve cost-effectiveness. A real-time communication and monitoring system is indispensable in underground mines to prevent significant hazards and improve safety in underground mines. However, the environmental conditions of underground mines are affected by toxic, flammable, combustible gases and dust. The harmful gases are a significant concern as they can cause gas explosions. Internet of Things (IoT) enabled real-time communication system with Long Range (LoRa) transceiver module is designed and developed to measure the underground mine environmental parameters, temperature, and humidity. The LoRa-based proof of concept (POC) system is tested and evaluated at the surface level and in two underground mines. The LoRa module radio waves range test is carried out to measure the received signal strength indicator (RSSI) value at the surface level. In addition, the developed system is tested and evaluated at different positions of underground mines to measure environmental parameters in straight and curved tunnels. The experimental results represent successful IoT with LoRa-based wireless communication between underground mine tunnels to the surface, wireless transmission of parameters at the straight tunnels, and curved tunnels of underground mines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Data availability

The data that has been used is confidential.

References

  1. Misra, G. B. (1986). Mine environment and ventilation. Oxford University Press.

    Google Scholar 

  2. Reddy, S.K., Naik, A.S. & Mandela, G.R. (2022). Wireless Monitoring of Environmental Parameters for Underground Mining using Internet of Things with LoRa Transceiver Module. In: 2022 IEEE 7th International Conference on Recent Advances and Innovations in Engineering (ICRAIE) (Vol. 7, pp. 224–229). IEEE. https://ieeexplore.ieee.org/document/10054280

  3. Jo, B., & Khan, R. M. A. (2018). An Internet of Things system for underground mine air quality pollutant prediction based on azure machine learning. Sensors, 18(4), 930.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  4. Reddy, S. K., Naik, A. S., & Mandela, G. R. (2023). Development of a reliable wireless communication system to monitor environmental parameters from various positions of underground mines to the surface using Zigbee modules. Journal of The Institution of Engineers India Series D. https://doi.org/10.1007/s40033-023-00486-7

    Article  Google Scholar 

  5. Naik, A. S., Reddy, S. K., & Mandela, G. R. (2023). A systematic review on implementation of Internet-of-Things-based system in underground mines to monitor environmental parameters. Journal of The Institution of Engineers India Series D. https://doi.org/10.1007/s40033-023-00541-3

    Article  Google Scholar 

  6. Pasquali, V., D’Alessandro, G., Gualtieri, R., & Leccese, F. (2017). A new data logger based on Raspberry-Pi for Arctic Notostraca locomotion investigations. Measurement Journal of the International Measurement Confederation, 110, 249–256. https://doi.org/10.1016/j.measurement.2017.07.004

    Article  Google Scholar 

  7. Pasquali, V.,Gualtieri, R., D’Alessandro, G., Granberg, M., Hazlerigg, D.,Cagnetti, M. & Leccese, F.(2016). Monitoring and Analyzing of Circadian and Ultradian Locomotor Activity Based on Raspberry-Pi, Electronics, 5(3): 58

  8. Pasquali, V., Gualtieri, R., D’Alessandro, G., Leccese, F. & Cagnetti, M. (2016). Experimental in Field Reliability Test for Data Logger based on Raspberry-Pi for Extreme Scenarios: a first step versus Aerospace Applications.In: 2016 IEEE Metrology for Aerospace (Metro AeroSpace), Florence, Italy, https://doi.org/10.1109/MetroAeroSpace.2016.7573242.

  9. Di Renzone, G., Landi, E., Mugnaini, M., Parri, L., Peruzzi, G., & Pozzebon, A. (2021). Assessment of LoRaWAN transmission systems under temperature and humidity, gas, and vibration aging effects within IIoT contexts. IEEE Transactions on Instrumentation and Measurement, 71, 1–11. https://doi.org/10.1109/TIM.2021.3137568

    Article  Google Scholar 

  10. Wu, F., Redouté, J. M., & Yuce, M. R. (2018). We-safe: A self-powered wearable iot sensor network for safety applications based on lora. IEEE Access, 6, 40846–40853. https://doi.org/10.1109/ACCESS.2018.2859383

    Article  Google Scholar 

  11. Adelantado, F., Vilajosana, X., Tuset-Peiro, P., Martinez, B., Melia-Segui, J., & Watteyne, T. (2017). Understanding the limits of LoRaWAN. IEEE Communications Magazine, 55(9), 34.

    Article  Google Scholar 

  12. Arshad, J., Aziz, M., Al-Huqail, A. A., Husnain, M., Rehman, A. U., & Shafiq, M. (2022). Implementation of a LoRaWAN based smart agriculture decision support system for optimum crop yield. Sustainability, 14(2), 827.

    Article  CAS  Google Scholar 

  13. Al-Turjman, F., & Abujubbeh, M. (2019). IoT-enabled smart grid via SM: An overview. Future Generation Computer Systems, 96, 579–590.

    Article  Google Scholar 

  14. Lalle, Y., Fourati, M., Fourati, L. C., & Barraca, J. P. (2021). Routing strategies for LoRaWAN multi-hop networks: A survey and an SDN-based solution for smart water grid. IEEE Access, 9, 168624–168647.

    Article  Google Scholar 

  15. Centelles, R. P., Meseguer, R., Freitag, F., Navarro, L., Ochoa, S. F., & Santos, R. M. (2021). LoRaMoto: A communication system to provide safety awareness among civilians after an earthquake. Future Generation Computer Systems, 115, 150–170.

    Article  Google Scholar 

  16. Ahsan, M., Based, M. A., Haider, J., & Rodrigues, E. M. (2021). Smart monitoring and controlling of appliances using LoRa based IoT system. Designs, 5(1), 17.

    Article  Google Scholar 

  17. Nikolakis, N., Kantaris, G., Bourmpouchakis, K., & Alexopoulos, K. (2021). A cyber-physical system approach for enabling ventilation on-demand in an underground mining site. Procedia CIRP, 97, 487–490.

    Article  Google Scholar 

  18. Lee, H. C., & Ke, K. H. (2018). Monitoring of large-area IoT sensors using a LoRa wireless mesh network system: Design and evaluation. IEEE Transactions on Instrumentation and Measurement, 67(9), 2177–2187.

    Article  ADS  Google Scholar 

  19. Li, L., Ren, J. & Zhu, Q. (2017). On the application of LoRa LPWAN technology in Sailing Monitoring System. In 2017 13th Annual Conference on Wireless On-demand Network Systems and Services (WONS) (pp. 77–80). IEEE. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7888762

  20. Ayoub Kamal, M., Alam, M. M., Sajak, A. A. B., & Mohd Su’ud, M. (2023). Requirements, deployments, and challenges of LoRa technology: A survey. Computational Intelligence and Neuroscience. https://doi.org/10.1155/2023/5183062

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fahmida, S., Modekurthy, V. P., Ismail, D., Jain, A., & Saifullah, A. (2022, May). Real-Time Communication over LoRa Networks. IEEE/ACM Seventh International Conference on Internet-of-Things Design and Implementation (IoTDI) (pp. 14–27). IEEE. https://doi.org/10.1109/IoTDI54339.2022.00019

  22. Haxhibeqiri, J., Karaagac, A., Van den Abeele, F., Joseph, W., Moerman, I. & Hoebeke, J. (2017). LoRa indoor coverage and performance in an industrial environment: Case study. In 2017 22nd IEEE international conference on emerging technologies and factory automation (ETFA) (pp. 1–8). IEEE. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8247601

  23. Jimenez, M., Medina, A., Navarro, L., Osorio, A., Robles, D., Calle, M., & Candelo-Becerra, J. (2019). Obstacles speed and spreading factor: Insights in LoRa mobile performance. International Journal on Communication Antenna Propagation., 9(3), 228–235. https://doi.org/10.15866/irecap.v9i3.17296

    Article  Google Scholar 

  24. Muduli, A., Kanakaraja, P., Ravi Chandrika, M., Sanjana, Y. & Sharukh, S. (2022). Industrial Environment Monitoring System Using LoRa. Proceedings of the 2nd International Conference on Recent Trends in Machine Learning, IoT, Smart Cities and Applications. Lecture Notes in Networks and Systems, Springer, Singapore. https://doi.org/10.1007/978-981-16-6407-6_57

  25. Sadeghi, S., Soltanmohammadlou, N. & Nasirzadeh, F. (2022). Applications of wireless sensor networks to improve occupational safety and health in underground mines. Journal of safety research. https://www.sciencedirect.com/science/article/pii/S0022437522001050

  26. Moridi, M. A., Kawamura, Y., Sharifzadeh, M., Chanda, E. K., & Jang, H. (2014). An investigation of underground monitoring and communication system based on radio waves attenuation using ZigBee. Tunnelling and Underground Space Technology, 43, 362–369.

    Article  Google Scholar 

  27. Yao, F., Ding, Y., Hong, S., & Yang, S. H. (2022). A survey on evolved LoRa-based communication technologies for emerging internet of things applications. International Journal of Network Dynamics and Intelligence, https://doi.org/10.53941/ijndi0101002

  28. Ke, W., & Wang, K. (2020). Impact of gas control policy on the gas accidents in coal mine. Processes, 8(11), 1405.

    Article  Google Scholar 

  29. Fu, G., Zhao, Z., Hao, C., & Wu, Q. (2019). The accident path of coal mine gas explosion based on 24Model: a case study of the Ruizhiyuan gas explosion accident. Processes, 7(2), 73.

    Article  Google Scholar 

  30. Shi, S., Jiang, B., Meng, X., & Yang, L. (2018). Fuzzy fault tree analysis for gas explosion of coal mining and heading faces in underground coal mines. Advances in Mechanical Engineering, 10(8), 1687814018792318. https://doi.org/10.1177/1687814018792318

    Article  Google Scholar 

  31. **ao, W., Xu, J., & Lv, X. (2018). Establishing a georeferenced spatio-temporal database for Chinese coal mining accidents between 2000 and 2015. Geomatics, Natural Hazards and Risk. https://doi.org/10.1080/19475705.2018.1521476

    Article  Google Scholar 

  32. Kurlenya, M. V., & Skritsky, V. A. (2017). Methane explosions and causes of their origin in highly productive sections of coal mines. Journal of Mining Science, 53, 861–867. https://doi.org/10.1134/S1062739117052886

    Article  CAS  Google Scholar 

  33. Wang, L., Cheng, Y.P. & Liu, H.Y. (2014). An analysis of fatal gas accidents in Chinese coal mines. Safety science, 62, pp.107–113. https://www.sciencedirect.com/science/article/pii/S092575351300194X

  34. Zhang, Y., Yang, W., Han, D. & Kim, Y.I. (2014). An integrated environment monitoring system for underground coal mines—Wireless sensor network subsystem with multi-parameter monitoring. Sensors, 14(7), pp.13149–13170. https://www.mdpi.com/1424-8220/14/7/13149

  35. Na, C. & Yi, M.A.O. (2011). Specific statistics and control method study on unsafe behavior in Chinese coal mines. Procedia Engineering, 26, pp.2222–2229. https://www.sciencedirect.com/science/article/pii/S1877705811052714

  36. Emmanuel, L., Farjow, W. & Fernando, X. (2019). Lora wireless link performance in multipath underground mines. In 2019 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT) (pp. 1–4). IEEE. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8910316

  37. Branch, P. & Cricenti, T. (2020). A LoRa relay based system for detonating explosives in underground mines. In 2020 IEEE International Conference on Industrial Technology (ICIT) (pp. 259–264). IEEE. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9067213&tag=1

  38. Branch, P., Li, B., & Zhao, K. (2020). A LoRa-based linear sensor network for location data in underground mining. Telecom MDPI, 1(2), 6.

    Google Scholar 

  39. Reddy, S. K., Naik, A. S., & Mandela, G. R. (2022). Implementation of Environmental Parameters Monitoring and Alert System for Underground Mining Using Internet of Things with LoRa Technology. In Techno-Societal 2016, International Conference on Advanced Technologies for Societal Applications (pp. 69–76). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-34644-6_8

  40. Reddy, S. K., & Naik, A. S. (2022). An Enhanced IoT and LoRa-Based Communication System for Underground Mines. In International Conference on Signals, Machines, and Automation, Singapore, Springer Nature Singapore.

  41. Hidayat, M.S., Nugroho, A.P., Sutiarso, L. & Okayasu, T. (2019). Development of environmental monitoring systems based on LoRa with cloud integration for rural area. In: IOP Conference Series: Earth and Environmental Science (Vol. 355, No. 1, p. 012010). IOP Publishing. https://doi.org/10.1088/1755-1315/355/1/012010

  42. Sai, K. B. K., Subbareddy, S. R., & Luhach, A. K. (2019). IOT based air quality monitoring system using MQ135 and MQ7 with machine learning analysis. Scalable Computing: Practice and Experience, 20(4), 599–606. https://doi.org/10.12694/scpe.v20i4.1561

    Article  Google Scholar 

  43. Suganthi, S. U., Valarmathi, G., Subashini, V., Janaki, R., & Prabha, R. (2021). Coal mine safety system for mining workers using LORA and WUSN. Materials Today: Proceedings, 46, 3803–3808.

    CAS  Google Scholar 

  44. Islam, M. M., Rahaman, A., & Islam, M. R. (2020). Development of smart healthcare monitoring system in IoT environment. SN Computer Science, 1, 1–11. https://doi.org/10.1007/s42979-020-00195-y

    Article  Google Scholar 

  45. Zaharudin, S.Z.B., Kazemi, M. & Malarvili, M.B. (2014). Designing a respiratory CO 2 measurement device for home monitoring of asthma severity. In: 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES) (pp. 230–234). IEEE.

  46. Fakra, D. A. H., Andriatoavina, D. A. S., Razafindralambo, N. A. M. N., Abdallah Amarillis, K., & Andriamampianina, J. M. M. (2020). A simple and low-cost integrative sensor system for methane and hydrogen measurement. Sensors International, 1, 100032.

    Article  Google Scholar 

  47. Sanger, J.B., Sitanayah, L. & Ahmad, I. (2021). A Sensor-based Garbage Gas Detection System. In: 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC) (pp. 1347–1353), IEEE

  48. Priya, P. B., & Reddy, G. M. (2020). Multi sensor IoT network system for safety applications based on LoRa technology. JETIR, 7(12), 347–352.

    Google Scholar 

  49. Mistry. S, LoRa API repository, Retrieved on 16th April (2023), https://github.com/sandeepmistry/arduino-LoRa/blob/master/API.md , https://github.com/sandeepmistry/arduino-LoRa

  50. Lavric, A., & Popa, V. (2018). Performance evaluation of LoRaWAN communication scalability in large-scale wireless sensor networks. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2018/6730719

    Article  Google Scholar 

  51. Anjum, M., Khan, M.A., Hassan, S.A., Mahmood, A. & Gidlund, M. (2019). Analysis of RSSI fingerprinting in LoRa networks. In: 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC) . IEEE.

  52. Tan, Z. A., Rahman, M. T. A., Rahman, A., Hamid, A. F. A., Amin, N. A. M., Munir, H. A., & Zabidi, M. M. M. (2019, November). Analysis on LoRa RSSI in Urban, Suburban, and Rural Area for Handover Signal Strength-Based Algorithm. In IOP Conference series: materials science and engineering (Vol. 705, No. 1, p. 012012). IOP Publishing.2

  53. Ziętek, B., Banasiewicz, A., Zimroz, R., Szrek, J., & Gola, S. (2020). A portable environmental data-monitoring system for air hazard evaluation in deep underground mines. Energies, 13(23), 6331.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Mining Engineering Department, National Institute of Technology Karnataka, Surathkal, India, and the manager of the underground Mine for permission to set up and conduct experiments at the mine site.

Funding

This research study was supported by the VGST/KSTEPS, DST, Government of Karnataka, India.

Author information

Authors and Affiliations

Authors

Contributions

B. Design and developed a portable LoRa-based system. Conducted experimentation in the field and tested the LoRa-based system in an underground mine. A.C. Guidance to perform experimentation at the field site. All authors reviewed the manuscript.

Corresponding author

Correspondence to Anil S. Naik.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, S.K., Naik, A.S. & Mandela, G.R. Development of a Novel Real-Time Environmental Parameters Monitoring System Based on the Internet of Things with LoRa Modules in Underground Mines. Wireless Pers Commun 133, 1517–1546 (2023). https://doi.org/10.1007/s11277-023-10827-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10827-0

Keywords

Navigation