Log in

Wearable Sensors-Based Human Activity Recognition with Deep Convolutional Neural Network and Fuzzy Classification

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The elderly and disabled often live without direct supervision and rely on remote monitoring for their care. However, current methods for information processing and activity recognition in healthcare decision-making have limitations. This paper proposes a professional solution by introducing a Deep Convolutional Neural Network (DeepCNN) and Fuzzy Support Vector Machine (FSVM) to extract significant features and label activities using a Fuzzy Membership Function (FMF). By utilizing FSVM with FMF, the problem of assigning instances to the correct class is solved, resulting in more accurate classification and a flexible system.The proposed method surpasses previous approaches on DLAs and UCI datasets, achieving an accuracy of 97.22% for DeepCNN-FSVM and 96.81% for FSVM on the UCI dataset. This research emphasizes the importance of activity recognition in smart healthcare for the elderly. Recent efforts by researchers have focused on develo** high-performance methods in activity recognition to overcome challenges faced by previous approaches. Overall, this paper highlights the potential of the DeepCNN-FSVM approach in improving activity recognition in smart healthcare for the elderly and disabled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability and Materials

The DLAs and UCI datasets used in this study are publicly available.

References

  1. Patricia, A. C. P., Enrico, V., Shariq, B. A., Emiro, D. L. F., Alberto, P. M. M., Isabel, O. C. A., Tariq, M. I., Restrepo, J. K. G., & Fulvio, P. (2023). Machine learning applied to datasets of human activity recognition: Data analysis in health care. Current Medical Imaging, 19(1), 46–64. https://doi.org/10.2174/1573405618666220104114814

    Article  Google Scholar 

  2. Serpush, F., Menhaj, M. B., Masoumi, B., & Karasfi, B. (2022). Wearable sensor-based human activity recognition in the smart healthcare system. Computational Intelligence and Neuroscience. https://doi.org/10.1155/2022/1391906

    Article  Google Scholar 

  3. Zhang, W., Zhu, T., Yang, C., **ao, J., & Ning, H. (2020). Sensors-based human activity recognition with convolutional neural network and attention mechanism. In 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS) (pp. 158–162). IEEE.‏ https://doi.org/10.1109/ICSESS49938.2020.9237720

  4. Martinez-Hernandez, U., & Dehghani-Sanij, A. A. (2018). Adaptive Bayesian inference system for recognition of walking activities and prediction of gait events using wearable sensors. Neural Networks, 102, 107–119. https://doi.org/10.1016/j.neunet.2018.02.017

    Article  Google Scholar 

  5. Dhillon, A., & Verma, G. K. (2020). Convolutional neural network: A review of models, methodologies and applications to object detection. Progress in Artificial Intelligence, 9(2), 85–112. https://doi.org/10.1007/s13748-019-00203-0

    Article  Google Scholar 

  6. Rubio-Solis, A., Panoutsos, G., Beltran-Perez, C., & Martinez-Hernandez, U. (2020). A multilayer interval type-2 fuzzy extreme learning machine for the recognition of walking activities and gait events using wearable sensors. Neurocomputing, 389, 42–55. https://doi.org/10.1016/j.neucom.2019.11.105

    Article  Google Scholar 

  7. Natan, O., & Miura, J. (2022). Towards compact autonomous driving perception with balanced learning and multi-sensor fusion. IEEE Transactions on Intelligent Transportation Systems, 23(9), 16249–16266. https://doi.org/10.1109/TITS.2022.3149370

    Article  Google Scholar 

  8. Chereshnev, R., & Kertész-Farkas, A. (2018). RapidHARe: A computationally inexpensive method for real-time human activity recognition from wearable sensors. Journal of Ambient Intelligence and Smart Environments, 10(5), 377–391. https://doi.org/10.3233/AIS-180497

    Article  Google Scholar 

  9. Velik, R. (2014). A brain-inspired multimodal data mining approach for human activity recognition in elderly homes. Journal of Ambient Intelligence and Smart Environments, 6(4), 447–468. https://doi.org/10.3233/AIS-140266

    Article  Google Scholar 

  10. Zhang, S., Li, Y., Zhang, S., Shahabi, F., **a, S., Deng, Y., & Alshurafa, N. (2022). Deep learning in human activity recognition with wearable sensors: A review on advances. Sensors, 22(4), 1476. https://doi.org/10.3390/s22041476

    Article  Google Scholar 

  11. Schrader, L., Vargas Toro, A., Konietzny, S., Rü**, S., Schäpers, B., Steinböck, M., Krewer, C., Müller, F., Güttler, J., & Bock, T. (2020). Advanced sensing and human activity recognition in early intervention and rehabilitation of elderly people. Journal of Population Ageing, 13, 139–165. https://doi.org/10.1007/s12062-020-09260-z

    Article  Google Scholar 

  12. Sujitha, P., & Simon, P. (2020). A computationally efficient method for human activity recognition based on spatio temporal cuboid and super normal vector. Journal of Intelligent & Fuzzy Systems, 38(5), 6247–6255. https://doi.org/10.3233/JIFS-179706

    Article  Google Scholar 

  13. Chen, G., Wang, A., Zhao, S., Liu, L., & Chang, C. Y. (2018). Latent feature learning for activity recognition using simple sensors in smart homes. Multimedia Tools and Applications, 77(12), 15201–15219. https://doi.org/10.1007/s11042-017-5100-4

    Article  Google Scholar 

  14. Nawal, Y., Oussalah, M., Fergani, B., & Fleury, A. (2022). New incremental SVM algorithms for human activity recognition in smart homes. Journal of Ambient Intelligence and Humanized Computing, 1–18.‏ https://doi.org/10.1007/s12652-022-03798-w

  15. Saha, J., Ghosh, D., Chowdhury, C., & Bandyopadhyay, S. (2021). Smart handheld based human activity recognition using multiple instance multiple label learning. Wireless Personal Communications, 117(2), 923–943. https://doi.org/10.1007/s11277-020-07903-0

    Article  Google Scholar 

  16. Mustafa, Z. (2023). A Study of Machine Learning Techniques based on Human Daily Living Activities via Inertial Sensors. In 2023 International Conference on IT Innovation and Knowledge Discovery (ITIKD) (pp. 1–7). IEEE.‏ https://doi.org/10.1109/ITIKD56332.2023.10099820

  17. Venkatesh, V., Raj, P., Kannan, K., & Balakrishnan, P. (2019). Precision centric framework for activity recognition using Dempster Shaffer theory and information fusion algorithm in smart environment. Journal of Intelligent and Fuzzy Systems, 36(3), 2117–2124. https://doi.org/10.3233/JIFS-169923

    Article  Google Scholar 

  18. De-La-Hoz-Franco, E., Ariza-Colpas, P., Quero, J. M., & Espinilla, M. (2018). Sensor-based datasets for human activity recognition–a systematic review of literature. IEEE Access, 6, 59192–59210. https://doi.org/10.1109/ACCESS.2018.2873502

    Article  Google Scholar 

  19. Onthoni, D. D., & Sahoo, P. K. (2022). Artificial-intelligence-assisted activities of daily living recognition for elderly in smart home. Electronics, 11(24), 4129. https://doi.org/10.3390/electronics11244129

    Article  Google Scholar 

  20. Halilaj, E., Rajagopal, A., Fiterau, M., Hicks, J. L., Hastie, T. J., & Delp, S. L. (2018). Machine learning in human movement biomechanics: Best practices, common pitfalls, and new opportunities. Journal of Biomechanics, 81, 1–11. https://doi.org/10.1016/j.jbiomech.2018.09.009

    Article  Google Scholar 

  21. Chiang, S. Y., Kan, Y. C., Chen, Y. S., Tu, Y. C., & Lin, H. C. (2016). Fuzzy computing model of activity recognition on WSN movement data for ubiquitous healthcare measurement. Sensors, 16(12), 2053. https://doi.org/10.3390/s16122053

    Article  Google Scholar 

  22. Mannini, A., Rosenberger, M., Haskell, W. L., Sabatini, A. M., & Intille, S. S. (2017). Activity recognition in youth using single accelerometer placed at wrist or ankle. Medicine and Science in Sports and Exercise, 49(4), 801. https://doi.org/10.1249/MSS.0000000000001144

    Article  Google Scholar 

  23. Antos, S. A., Albert, M. V., & Kording, K. P. (2014). Hand, belt, pocket or bag: Practical activity tracking with mobile phones. Journal of Neuroscience Methods, 231, 22–30. https://doi.org/10.1016/j.jneumeth.2013.09.015

    Article  Google Scholar 

  24. Chen, Y., Guo, M., & Wang, Z. (2016). An improved algorithm for human activity recognition using wearable sensors. In 2016 Eighth International Conference on Advanced Computational Intelligence (ICACI), 248–252.‏https://doi.org/10.1109/ICACI.2016.7449833

  25. Cruciani, F., Cleland, I., Nugent, C., McCullagh, P., Synnes, K., & Hallberg, J. (2018). Automatic annotation for human activity recognition in free living using a smartphone. Sensors, 18(7), 2203. https://doi.org/10.3390/s18072203

    Article  Google Scholar 

  26. Schuch, C. P., Balbinot, G., Jeffers, M. S., McDonald, M. W., Dykes, A., Kuhl, L. M., & Corbett, D. (2019). An RFID-based activity tracking system to monitor individual rodent behavior in environmental enrichment: Implications for post-stroke cognitive recovery. Journal of Neuroscience Methods, 324, 108306. https://doi.org/10.1016/j.jneumeth.2019.05.015

    Article  Google Scholar 

  27. Aziz, R., Verma, C. K., Jha, M., & Srivastava, N. (2017). Artificial neural network classification of microarray data using new hybrid gene selection method. International Journal of Data Mining and Bioinformatics, 17(1), 42–65. https://doi.org/10.1504/IJDMB.2017.084026

    Article  Google Scholar 

  28. Ghayekhloo, M., & Menhaj, M. B. (2017). Combination of transformed-means clustering and neural networks for short-term solar radiation forecasting. AUT Journal of Electrical Engineering, 49(2), 187–194. https://doi.org/10.22060/eej.2017.12487.5077

    Article  Google Scholar 

  29. Rezaie, H., & Ghassemian, M. (2018). Comparison analysis of radio_based and sensor_based wearable human activity recognition systems. Wireless Personal Communications, 101(2), 775–797. https://doi.org/10.1007/s11277-018-5715-4

    Article  Google Scholar 

  30. Singh, H. R., Biswas, S. K., & Purkayastha, B. (2019). A neuro-fuzzy classification system using dynamic clustering. In Machine Intelligence and Signal Analysis, 157–170.‏ https://doi.org/10.1007/978-981-13-0923-6_14.

  31. Semwal, V. B., Gaud, N., & Nandi, G. C. (2019). Human gait state prediction using cellular automata and classification using ELM. In Machine intelligence and signal analysis, 135–145. https://doi.org/10.1007/978-981-13-0923-6_12

  32. van Dam, E. A., van der Harst, J. E., ter Braak, C. J., Tegelenbosch, R. A., Spruijt, B. M., & Noldus, L. P. (2013). An automated system for the recognition of various specific rat behaviours. Journal of neuroscience methods, 218(2), 214–224. https://doi.org/10.1016/j.jneumeth.2013.05.012

    Article  Google Scholar 

  33. Abedini, F., Menhaj, M. B., & Keyvanpour, M. R. (2019). An MLP-based representation of neural tensor networks for the RDF data models. Neural Computing and Applications, 31(2), 1135–1144. https://doi.org/10.1007/s00521-017-3053-1

    Article  Google Scholar 

  34. Mandelli, S., Bestagini, P., Tubaro, S., Cozzolino, D., & Verdoliva, L. (2018). Blind detection and localization of video temporal splicing exploiting sensor-based footprints. In 2018 26th European Signal Processing Conference (EUSIPCO), 1362–1366.‏ https://doi.org/10.23919/EUSIPCO.2018.8553511.

  35. Inoue, T., & Abe, S. (2001). Fuzzy support vector machines for pattern classification. International Joint Conference on Neural Networks. Proceedings, 2(Cat. 01CH37222), 1449–1454.‏ https://doi.org/10.1109/IJCNN.2001.939575

  36. Guernine, T., & Zeroual, K. (2011). New fuzzy multi-class method to train SVM classifier. DBKDA, 2011, 77.

    Google Scholar 

  37. Adib, A., & Masoumi, B. (2017). Mobile robots navigation in unknown environments by using fuzzy logic and learning automata. In 2017 Artificial Intelligence and Robotics (IRANOPEN), 58–63.‏ https://doi.org/10.1109/RIOS.2017.7956444.

  38. Banerjee, S., Mitra, S., & Shankar, Eds., Synergetic, B.U. (2017). neuro-fuzzy feature selection and classification of brain tumors, In 2017 IEEE International Conference on Fuzzy Systems, ‏1–6. https://doi.org/10.1109/FUZZ-IEEE.2017.8015514

  39. Chang, J. Y., Shyu, J. J., & Cho, C. W. (2009). Fuzzy rule inference based human activity recognition. In 2009 IEEE Control Applications,(CCA) & Intelligent Control, 211–215. https://doi.org/10.1109/CCA.2009.5280999

  40. Al-Khafajiy, M., Baker, T., Chalmers, C., Asim, M., Kolivand, H., Fahim, M., & Waraich, A. (2019). Remote health monitoring of elderly through wearable sensors. Multimedia Tools and Applications, 78(17), 24681–24706. https://doi.org/10.1109/CCA.2009.5280999

    Article  Google Scholar 

  41. **a, K., Huang, J., & Wang, H. (2020). LSTM-CNN architecture for human activity recognition. IEEE Access, 8, 56855–56866. https://doi.org/10.1109/ACCESS.2020.2982225

    Article  Google Scholar 

  42. Tang, Y., Teng, Q., Zhang, L., Min, F., & He, J. (2020). Layer-wise training convolutional neural networks with smaller filters for human activity recognition using wearable sensors. IEEE Sensors Journal, 21(1), 581–592. https://doi.org/10.1109/JSEN.2020.3015521

    Article  Google Scholar 

  43. Quaid, M. A. K., & Jalal, A. (2020). Wearable sensors based human behavioral pattern recognition using statistical features and reweighted genetic algorithm. Multimedia Tools and Applications, 79(9), 6061–6083. https://doi.org/10.1007/s11042-019-08463-7

    Article  Google Scholar 

  44. Sharma, R., & Pachori, R. B. (2015). Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions. Expert Systems with Applications, 42(3), 1106–1117. https://doi.org/10.1016/j.eswa.2014.08.030

    Article  Google Scholar 

  45. Mannini, A., Intille, S. S., Rosenberger, M., Sabatini, A. M., & Haskell, W. (2013). Activity recognition using a single accelerometer placed at the wrist or ankle. Medicine and Science in Sports and Exercise, 45(11), 2193. https://doi.org/10.1249/MSS.0b013e31829736d6

    Article  Google Scholar 

  46. Zhao, Y., Yang, R., Chevalier, G., Xu, X., & Zhang, Z. (2018). Deep residual bidir-LSTM for human activity recognition using wearable sensors. Mathematical Problems in Engineering. https://doi.org/10.1155/2018/7316954

    Article  Google Scholar 

  47. Hassan, M. M., Huda, S., Uddin, M. Z., Almogren, A., & Alrubaian, M. (2018). Human activity recognition from body sensor data using deep learning. Journal of medical systems, 42(6), 1–8. https://doi.org/10.1007/s10916-018-0948-z

    Article  Google Scholar 

  48. Hassan, M. M., Uddin, M. Z., Mohamed, A., & Almogren, A. (2018). A robust human activity recognition system using smartphone sensors and deep learning. Future Generation Computer Systems, 81, 307–313. https://doi.org/10.1016/j.future.2017.11.029

    Article  Google Scholar 

  49. Mohmed, G., Lotfi, A., & Pourabdollah, A. (2020). Enhanced fuzzy finite state machine for human activity modelling and recognition. Journal of Ambient Intelligence and Humanized Computing, 11(12), 6077–6091. https://doi.org/10.1007/s12652-020-01917-z

    Article  Google Scholar 

  50. Teng, Q., Wang, K., Zhang, L., & He, J. (2020). The layer-wise training convolutional neural networks using local loss for sensor-based human activity recognition. IEEE Sensors Journal, 20(13), 7265–7274. https://doi.org/10.1109/JSEN.2020.3015521

    Article  Google Scholar 

  51. Hang, J., Zhang, J., & Cheng, M. (2016). Application of multi-class fuzzy support vector machine classifier for fault diagnosis of wind turbine. Fuzzy Sets and Systems, 297, 128–140. https://doi.org/10.1016/j.fss.2015.07.005

    Article  MathSciNet  Google Scholar 

  52. Mekruksavanich, S., & Jitpattanakul, A. (2021). Biometric user identification based on human activity recognition using wearable sensors: An experiment using deep learning models. Electronics, 10(3), 308. https://doi.org/10.3390/electronics10030308

    Article  Google Scholar 

  53. Ij**a, E. P., & Mohan, C. K. (2015). Human action recognition based on motion capture information using fuzzy convolution neural networks. In 2015 Eighth International Conference on Advances in Pattern Recognition (ICAPR), 1–6.‏ https://doi.org/10.1109/ICAPR.2015.7050706

  54. Lee, S. M., Yoon, S. M., & Cho, H. (2017). Human activity recognition from accelerometer data using Convolutional Neural Network. In 2017 IEEE international Conference on Big Data and Smart Computing (bigcomp), 131–134.‏https://doi.org/10.1109/BIGCOMP.2017.7881728.

  55. Serpush, F., & Rezaei, M. (2021). Complex human action recognition using a hierarchical feature reduction and deep learning-based method. SN Computer Science, 2(2), 1–15. https://doi.org/10.1007/s42979-021-00484-0

    Article  Google Scholar 

  56. Ronao, C. A., & Cho, S. B. (2016). Human activity recognition with smartphone sensors using deep learning neural networks. Expert systems with applications, 59, 235–244. https://doi.org/10.1016/j.eswa.2016.04.032

    Article  Google Scholar 

  57. Chen, S. G., & Wu, X. J. (2018). A new fuzzy twin support vector machine for pattern classification. International Journal of Machine Learning and Cybernetics, 9(9), 1553–1564. https://doi.org/10.1007/s13042-017-0664-x

    Article  Google Scholar 

  58. Jiang, X., Yi, Z., & Lv, J. C. (2006). Fuzzy SVM with a new fuzzy membership function. Neural Computing and Applications, 15(3), 268–276. https://doi.org/10.1007/s00521-006-0028-z

    Article  Google Scholar 

  59. Wang, S., Yang, X., Zhang, Y., Phillips, P., Yang, J., & Yuan, T. F. (2015). Identification of green, oolong and black teas in China via wavelet packet entropy and fuzzy support vector machine. Entropy, 17(10), 6663–6682. https://doi.org/10.3390/e17106663

    Article  Google Scholar 

  60. Keyvanpour, M., & Serpush, F. (2019). ESLMT: A new clustering method for biomedical document retrieval. Biomedical Engineering/Biomedizinische Technik, 64(6), 729–741. https://doi.org/10.1515/bmt-2018-0068

    Article  Google Scholar 

  61. Gokgoz, E., & Subasi, A. (2015). Comparison of decision tree algorithms for EMG signal classification using DWT. Biomedical Signal Processing and Control, 18, 138–144. https://doi.org/10.1016/j.bspc.2014.12.005

    Article  Google Scholar 

  62. Batuwita, R., & Palade, V. (2010). FSVM-CIL: Fuzzy support vector machines for class imbalance learning. IEEE Transactions on Fuzzy Systems, 18(3), 558–571. https://doi.org/10.1109/TFUZZ.2010.2042721

    Article  Google Scholar 

  63. Rajasegarar, S., Leckie, C., Palaniswami, M., & Bezdek, J. C. (2007). Quarter sphere based distributed anomaly detection in wireless sensor networks. In 2007 IEEE International Conference on Communications, 3864–3869. https://doi.org/10.1109/ICC.2007.637

  64. Khemchandani, R., & Sharma, S. (2016). Robust least squares twin support vector machine for human activity recognition. Applied Soft Computing, 47, 33–46. https://doi.org/10.1016/j.asoc.2016.05.025

    Article  Google Scholar 

  65. https://www.mad.tf.fau.de/research/activitynet/daliac-daily-life-activities/

  66. https://archive.ics.uci.edu/dataset/240/human+activity+recognition+using+smartphones

  67. Serpush, F., Keyvanpour, M., & Menhaj, M. B. (2023). Remote elderly healthcare: A robust deep learning approach for wearable sensors-based complex activities recognition. AUT Journal of Modeling and Simulation, 55(1), 7–7.‏ https://doi.org/10.1016/j.asoc.2016.05.025

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grants from public, commercial, or not-for-profit funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Behrooz Masoumi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serpush, F., Menhaj, M.B., Masoumi, B. et al. Wearable Sensors-Based Human Activity Recognition with Deep Convolutional Neural Network and Fuzzy Classification. Wireless Pers Commun 133, 889–911 (2023). https://doi.org/10.1007/s11277-023-10797-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10797-3

Keywords

Navigation