Log in

A Novel Intelligent Intrusion Prevention Framework for Network Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Nowadays, the intrusion prevention model in network applications is essential in protecting data from malicious users. The intrusion prevention model involves detecting and removing malicious events in the network. Although different prevention models have been developed in the past, there are still some issues with preventing malicious events and providing continuous monitoring. Hence, a novel hybrid prevention model named the Buffalo-based Elman neural model was proposed in this paper. Here, the input dataset, such as NSL-KDD and CICIDS, is trained and pre-processed to remove the noise features from the dataset. Also, feature extraction and attack classification are done to extract features from the dataset and neglect the malicious features. Moreover, continuous monitoring is provided in the network with the help of a login strategy. The designed model is implemented in a python environment, and the model's outcomes are validated. Finally, a comparative analysis is made by comparing the outcomes of the proposed model with other existing prevention models in terms of Accuracy, F-measure, error rate, execution time, recall, and precision. Comparative analysis shows that the designed intrusion prevention model achieved better outcomes than existing models. For NSL-KDD and CICIDS data, the proposed model achieved 98.4% and 99.7% accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Premkumar, M., Ashokkumar, S. R., Jeevanantham, V., Mohanbabu, G., & AnuPallavi, S. (2023). Scalable and energy efficient cluster based anomaly detection against denial of service attacks in wireless sensor networks. Wireless Personal Communications. https://doi.org/10.1007/s11277-023-10252-3

    Article  Google Scholar 

  2. Rabhi, S., Abbes, T., & Zara, F. (2023). IoT routing attacks detection using machine learning algorithms. Wireless Personal Communications, 128(3), 1839–1857. https://doi.org/10.1007/s11277-022-10022-7

    Article  Google Scholar 

  3. Beslin Pajila, P. J., Golden Julie, E., & Harold Robinson, Y. (2023). ABAP: Anchor node based DDoS attack detection using adaptive neuro-fuzzy inference system. Wireless Personal Communications, 128(2), 875–899. https://doi.org/10.1007/s11277-022-09980-9

    Article  Google Scholar 

  4. Om Kumar, C. U., Marappan, S., Murugesha, B., & Beaulah, P. M. R. (2023). Correction to: Intrusion detection model for IoT using recurrent kernel convolutional neural network. Wireless Personal Communications, 129, 813. https://doi.org/10.1007/s11277-023-10167-z

    Article  Google Scholar 

  5. Soni, C., & Gupta, N. (2023). Enhancement of PLS model of massive MIMO by detecting eavesdrop attacks and improving the secrecy capacity of the system based on optimization strategy. Wireless Personal Communications, 129, 1143–1159. https://doi.org/10.1007/s11277-023-10180-2

    Article  Google Scholar 

  6. Tama, B. A., & Lim, S. (2021). Ensemble learning for intrusion detection systems: A systematic map** study and cross-benchmark evaluation. Computer Science Review, 39, 100357. https://doi.org/10.1016/j.cosrev.2020.100357

    Article  MathSciNet  Google Scholar 

  7. Alsaedi, A., Moustafa, N., Tari, Z., Mahmood, A., & Anwar, A. (2020). TON_IoT telemetry dataset: A new generation dataset of IoT and IIoT for data-driven intrusion detection systems. IEEE Access, 8, 165130–165150. https://doi.org/10.1109/ACCESS.2020.3022862

    Article  Google Scholar 

  8. Sultana, N., Chilamkurti, N., Peng, W., & Alhadad, R. (2019). Survey on SDN based network intrusion detection system using machine learning approaches. Peer-to-Peer Networking and Applications, 12(2), 493–501. https://doi.org/10.1007/s12083-017-0630-0

    Article  Google Scholar 

  9. Ahmad, Z., Shahid Khan, A., Wai Shiang, C., Abdullah, J., & Ahmad, F. (2021). Network intrusion detection system: A systematic study of machine learning and deep learning approaches. Transactions on Emerging Telecommunications Technologies, 32(1), e4150. https://doi.org/10.1002/ett.4150

    Article  Google Scholar 

  10. Birkinshaw, C., Rouka, E., & Vassilakis, V. G. (2019). Implementing an intrusion detection and prevention system using software-defined networking: Defending against port-scanning and denial-of-service attacks. Journal of Network and Computer Applications, 136, 71–85. https://doi.org/10.1016/j.jnca.2019.03.005

    Article  Google Scholar 

  11. Nykvist, C., Larsson, M., Sodhro, A. H., & Gurtov, A. (2020). A lightweight portable intrusion detection communication system for auditing applications. International Journal of Communication Systems, 33(7), e4327. https://doi.org/10.1002/dac.4327

    Article  Google Scholar 

  12. Saranya, T., Sridevi, S., Deisy, C., Chung, T. D., & Ahamed Khan, M. K. A. (2020). Performance analysis of machine learning algorithms in intrusion detection system: A review. Procedia Computer Science, 171, 1251–1260. https://doi.org/10.1016/j.procs.2020.04.133

    Article  Google Scholar 

  13. Ge, M., Fu, X., Syed, N., Baig, Z., Teo, G., & Robles-Kelly, A. (2019). Deep learning-based intrusion detection for IoT networks. 2019 IEEE 24th pacific rim international symposium on dependable computing (PRDC), IEEE. DOI: https://doi.org/10.1109/PRDC47002.2019.00056

  14. Wu, Z., Wang, J., Hu, L., Zhang, Z., & Wu, H. (2020). A network intrusion detection method based on semantic Re-encoding and deep learning. Journal of Network and Computer Applications, 164, 102688. https://doi.org/10.1016/j.jnca.2020.102688

    Article  Google Scholar 

  15. Sharma, S., & Kaul, A. (2018). A survey on intrusion detection systems and honeypot based proactive security mechanisms in VANETs and VANET Cloud. Vehicular communications, 12, 138–164. https://doi.org/10.1016/j.vehcom.2018.04.005

    Article  Google Scholar 

  16. Kalaivani, S., Vikram, A., & Gopinath, G. (2019). An effective swarm optimization based intrusion detection classifier system for cloud computing. 2019 5th international conference on advanced computing & communication systems (ICACCS), IEEE. DOI: https://doi.org/10.1109/ICACCS.2019.8728450

  17. Graves, C. E., Li, C., Sheng, X., Ma, W., Chalamalasetti, S. R., Miller, D., Ignowski, J. S., Buchanan, B., Zheng, L., Lam, S. T., Li, X., Kiyama, L., Foltin, M., Hardy, M. P., & Strachan, J. P. (2019). Memristor TCAMs accelerate regular expression matching for network intrusion detection. IEEE Transactions on Nanotechnology, 18, 963–970. https://doi.org/10.1109/TNANO.2019.2936239

    Article  Google Scholar 

  18. Deng, L., Li, D., Yao, X., & Wang, H. (2019). RETRACTED ARTICLE: Mobile network intrusion detection for IoT system based on transfer learning algorithm. Cluster Computing, 22(4), 9889–9904. https://doi.org/10.1007/s10586-018-1847-2

    Article  Google Scholar 

  19. da Costa, K. A. P., Papa, J. P., Lisboa, C. O., Munoz, R., & de Albuquerque, V. H. C. (2019). Internet of Things: A survey on machine learning-based intrusion detection approaches. Computer Networks, 151, 147–157. https://doi.org/10.1016/j.comnet.2019.01.023

    Article  Google Scholar 

  20. Lopez-Martin, M., Carro, B., & Sanchez-Esguevillas, A. (2020). Application of deep reinforcement learning to intrusion detection for supervised problems. Expert Systems with Applications, 141, 112963. https://doi.org/10.1016/j.eswa.2019.112963

    Article  Google Scholar 

  21. Kim, A., Park, M., & Lee, D. H. (2020). AI-IDS: Application of deep learning to real-time Web intrusion detection. IEEE Access, 8, 70245–70261. https://doi.org/10.1109/ACCESS.2020.2986882

    Article  Google Scholar 

  22. Mishra, N., & Pandya, S. (2021). Internet of things applications, security challenges, attacks, intrusion detection, and future visions: A systematic review. IEEE Access, 9, 59353–59377. https://doi.org/10.1109/ACCESS.2021.3073408

    Article  Google Scholar 

  23. Al-Hadhrami, Y., & Hussain, F. K. (2020). Real time dataset generation framework for intrusion detection systems in IoT. Future Generation Computer Systems, 108, 414–423. https://doi.org/10.1016/j.future.2020.02.051

    Article  Google Scholar 

  24. Fang, W., Tan, X., & Wilbur, D. (2020). Application of intrusion detection technology in network safety based on machine learning. Safety Science, 124, 104604. https://doi.org/10.1016/j.ssci.2020.104604

    Article  Google Scholar 

  25. Chiba, Z., Abghour, N., Moussaid, K., Lifandali, O., & Kinta, R. (2022). A deep study of novel intrusion detection systems and intrusion prevention systems for Internet of Things Networks. Procedia Computer Science, 210, 94–103. https://doi.org/10.1016/j.procs.2022.10.124

    Article  Google Scholar 

  26. Zhang, C., Chen, Y., Meng, Y., Ruan, F., Chen, R., Li, Y., & Yang, Y. (2021). A novel framework design of network intrusion detection based on machine learning techniques. Security and Communication Networks, 2021, 1–15. https://doi.org/10.1155/2021/6610675

    Article  Google Scholar 

  27. Abiodun, O. I., Alawida, M., Omolara, A. E., & Alabdulatif, A. (2022). Data provenance for cloud forensic investigations, security, challenges, solutions and future perspectives: A survey. Journal of King Saud University-Computer and Information Sciences, 34(10), 10217–10245. https://doi.org/10.1016/j.jksuci.2022.10.018

    Article  Google Scholar 

  28. Alawida, M., Omolara, A. E., Abiodun, O. I., & Al-Rajab, M. (2022). A deeper look into cybersecurity issues in the wake of Covid-19: A survey. Journal of King Saud University-Computer and Information Sciences, 34(10), 8176–8206. https://doi.org/10.1016/j.jksuci.2022.08.003

    Article  Google Scholar 

  29. Abiodun, E. O., Alabdulatif, A., Abiodun, O. I., Alawida, M., Alabdulatif, A., & Alkhawaldeh, R. S. (2021). A systematic review of emerging feature selection optimization methods for optimal text classification: The present state and prospective opportunities. Neural Computing and Applications, 33(22), 15091–15118. https://doi.org/10.1007/s00521-021-06406-8

    Article  Google Scholar 

  30. Omolara, A. E., Jantan, A., Abiodun, O. I., Dada, K. V., Arshad, H., & Emmanuel, E. (2019). A deception model robust to eavesdrop** over communication for social network systems. IEEE Access, 7, 100881–100898. https://doi.org/10.1109/ACCESS.2019.2928359

    Article  Google Scholar 

  31. Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Umar, A. M., Umar, O. U., Arshad, H., Kazaure, A. A., Gana, U., & Kiru, M. U. (2019). Comprehensive review of artificial neural network applications to pattern recognition. IEEE Access, 7, 158820–158846. https://doi.org/10.1109/ACCESS.2019.2945545

    Article  Google Scholar 

  32. Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., & Arshad, H. (2018). State-of-the-art in artificial neural network applications: A survey. Heliyon, 4(11), e00938. https://doi.org/10.1016/j.heliyon.2018.e00938

    Article  Google Scholar 

  33. Omolara, A. E., Jantan, A., Abiodun, O. I., Arshad, H., & Mohamed, N. A. (2019). Fingereye: improvising security and optimizing ATM transaction time based on iris-scan authentication. International Journal of Electrical & Computer Engineering (2088-8708), 9(3), 1879–1886. https://doi.org/10.11591/ijece.v9i3

    Article  Google Scholar 

  34. Esther Omolara, A., Jantan, A., Abiodun, O. I., Arshad, H., Dada, K. V., & Emmanuel, E. (2020). HoneyDetails: A prototype for ensuring patient’s information privacy and thwarting electronic health record threats based on decoys. Health informatics journal, 26(3), 2083–2104. https://doi.org/10.1177/1460458219894479

    Article  Google Scholar 

  35. Abiodun, O. I., Abiodun, E. O., Alawida, M., Alkhawaldeh, R. S., & Arshad, H. (2021). A review on the security of the internet of things: Challenges and solutions. Wireless Personal Communications, 119, 2603–2637. https://doi.org/10.1007/s11277-021-08348-9

    Article  Google Scholar 

  36. Kumar Chandar, S. (2021). Grey Wolf optimization-Elman neural network model for stock price prediction. Soft Computing, 25(1), 649–658. https://doi.org/10.1007/s00500-020-05174-2

    Article  Google Scholar 

  37. Odili, J. B., Nasser, A. B., Noraziah, A., Wahab, M. H. A., & Ahmed, M. (2021). African Buffalo Optimization Algorithm Based T-Way Test Suite Generation Strategy for Electronic-Payment Transactions. International Conference on Emerging Technologies and Intelligent Systems, Springer, Cham. https://doi.org/10.1007/978-3-030-82616-1_15

  38. Abrar, I., Ayub, Z., Masoodi, F., & Bamhdi, A. M. (2020). A machine learning approach for intrusion detection system on NSL-KDD dataset. 2020 International Conference on Smart Electronics and Communication (ICOSEC), IEEE. https://doi.org/10.1109/ICOSEC49089.2020.9215232

  39. Manimurugan, S., Al-Mutairi, S., Aborokbah, M. M., Chilamkurti, N., Ganesan, S., & Patan, R. (2020). Effective attack detection in internet of medical things smart environment using a deep belief neural network. IEEE Access, 8, 77396–77404. https://doi.org/10.1109/ACCESS.2020.2986013

    Article  Google Scholar 

  40. Rajagopal, S., Kundapur, P. P., & Hareesha, K. S. (2021). Towards effective network intrusion detection: From concept to creation on Azure cloud. IEEE Access, 9, 19723–19742. https://doi.org/10.1109/ACCESS.2021.3054688

    Article  Google Scholar 

Download references

Acknowledgements

None

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rekha Gangula.

Ethics declarations

Conflict of Interest

The authors declare that they have no potential conflict of interest.

Statement of Animal and Human Rights

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Informed Consent

For this type of analysis formal consent is not needed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangula, R., Pratapagiri, S., Bejugama, S.M. et al. A Novel Intelligent Intrusion Prevention Framework for Network Applications. Wireless Pers Commun 131, 1833–1858 (2023). https://doi.org/10.1007/s11277-023-10523-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10523-z

Keywords

Navigation