Log in

Performance Analysis and Simulation of Millimeter Wave Cell-Free mMIMO Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Towards the 5Gnetworks and beyond, there are a lot of emerging technologies. These technologies include but not limited to; multiple input multiple output (MIMO), cell-Free networks, and millimeter wave bands. The cellular MIMO can provide a satisfied performance for users except the shadowed and the cell-edge ones. In order to overcome this disadvantage, the cell-Free networks are deployed. Through applications of distributed access points (APs), the cell-Free networks can provide a ubiquitous coverage for users as whole. Therefore, they can provide a high throughput for users. Moreover, the applications of millimeter wave bands can provide a high bandwidth and hence, a high throughput for users. In other words, the application of the cell-Free technology combined with the millimeter wave bands can extremely enlarge the users’ throughput. This is the motivation of our manuscript. The purpose of this manuscript is to provide mathematical model and simulation for the cell-Free mMIMO network, operating in the millimeter wave bands. The performance metrics can include; the spectral efficiency (SE), bit error rate (BER), and energy efficiency (EE). It is observed that the centralized cooperation among the APs can let users have a satisfied throughput even the system employs the maximal ratio combining (MRC). Furthermore, all cooperation levels, among APs, can perform well even for non-light of sight (NLOS) environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

The Mathlab code is available on reasonable request.

References

  1. Muirhead, D., Imran, M. A., & Arshad, K. (2016). A survey of the challenges, opportunities and use of multiple antennas in current and future 5g small cell base stations. IEEE Access, 4, 2952–2964. https://doi.org/10.1109/ACCESS.2016.2569483

    Article  Google Scholar 

  2. Yang, Y., Bai, B., & Chen, W. (2017). Spectrum reuse ratio in 5G cellular networks: A matrix graph approach. IEEE Transactions on Mobile Computing, 16(12), 3541–3553. https://doi.org/10.1109/TMC.2017.2696005

    Article  Google Scholar 

  3. Taufique, A., Jaber, M., Imran, A., Dawy, Z., & Yacoub, E. (2017). planning wireless cellular networks of future: Outlook, challenges and opportunities. IEEE Access, 5, 4821–4845. https://doi.org/10.1109/ACCESS.2017.2680318

    Article  Google Scholar 

  4. Song, F., et al. (2019). Probabilistic caching for small-cell networks with terrestrial and aerial users. IEEE Transactions on Vehicular Technology, 68(9), 9162–9177. https://doi.org/10.1109/TVT.2019.2929839

    Article  Google Scholar 

  5. **n, Y., Wang, D., Li, J., Zhu, H., Wang, J., & You, X. (2016). Area spectral efficiency and area energy efficiency of massive MIMO cellular systems. IEEE Transactions on Vehicular Technology, 65(5), 3243–3254. https://doi.org/10.1109/TVT.2015.2436896

    Article  Google Scholar 

  6. Shojaeifard, A., Wong, K. K., Di Renzo, M., Zheng, G., Hamdi, K. A., & Tang, J. (2017). Massive MIMO-enabled full-duplex cellular networks. IEEE Transactions on Communications, 65(11), 4734–4750. https://doi.org/10.1109/TCOMM.2017.2731768

    Article  Google Scholar 

  7. Han, Y., Rao, B. D., & Lee, J. (2020). massive uncoordinated access with massive MIMO: A dictionary learning approach. IEEE Transactions on Wireless Communications, 19(2), 1320–1332. https://doi.org/10.1109/TWC.2019.2952843

    Article  Google Scholar 

  8. You, L., **ao, M., Song, X., Liu, Y., Wang, W., Gao, X., & Fettweis, G. (2020). Pilot Reuse for vehicle-to-vehicle underlay massive MIMO transmission. IEEE Transactions on Vehicular Technology, 69(5), 5693–5697. https://doi.org/10.1109/TVT.2020.2982013

    Article  Google Scholar 

  9. Björnson, E., Hoydis, J., & Sanguinetti, L. (2018). Massive MIMO has unlimited capacity. IEEE Transactions on Wireless Communications, 17(1), 574–590. https://doi.org/10.1109/TWC.2017.2768423

    Article  Google Scholar 

  10. Sanguinetti, L., Björnson, E., & Hoydis, J. (2020). Toward massive mIMO 2.0: understanding spatial correlation, interference suppression, and pilot contamination. IEEE Transactions on Communications, 68(1), 232–257. https://doi.org/10.1109/TCOMM.2019.2945792

    Article  Google Scholar 

  11. Ngo, H. Q., Ashikhmin, A., Yang, H., Larsson, E. G., & Marzetta, T. L. (2017). Cell-Free Massive MIMO Versus Small Cells. IEEE Transactions on Wireless Communications, 16(3), 1834–1850. https://doi.org/10.1109/TWC.2017.2655515

    Article  Google Scholar 

  12. Nayebi, E., Ashikhmin, A., Marzetta, T. L., Yang, H., & Rao, B. D. (2017). Precoding and power optimization in cell-free massive MIMO systems. IEEE Transactions on Wireless Communications, 16(7), 4445–4459. https://doi.org/10.1109/TWC.2017.2698449

    Article  Google Scholar 

  13. Björnson, E., & Sanguinetti, L. (2020). Making cell-free massive MIMO competitive with mmse processing and centralized implementation. IEEE Transactions on Wireless Communications, 19(1), 77–90. https://doi.org/10.1109/TWC.2019.2941478

    Article  Google Scholar 

  14. Shalaby, M., Hussein, H. M., Shokair, M., & Benaya, A. M. (2021). The cell-free mMIMO networks: Mathematical analysis and performance evaluation. Telecommunication Systems. https://doi.org/10.1007/s11235-021-00776-z

    Article  Google Scholar 

  15. Kumar, A., Tentu, V., Amudala, D. N., & Budhiraja, R. (2023). WSEE optimization of cell-free mmimo uplink using deep deterministic policy gradient. IEEE Communications Letters, 27(1), 219–223. https://doi.org/10.1109/LCOMM.2022.3209867

    Article  Google Scholar 

  16. Peng, Q., Ren, H., Pan, C., Liu, N., & Elkashlan, M. (2023). Resource allocation for uplink cell-free massive MIMO enabled URLLC in a smart factory. IEEE Transactions on Communications, 71(1), 553–568. https://doi.org/10.1109/TCOMM.2022.3224502

    Article  Google Scholar 

  17. Jiang Y., & Zou, Y. Secrecy energy efficiency maximization for multi-user multi-eavesdropper cell-free massive MIMO networks. IEEE transactions on vehicular technology, https://doi.org/10.1109/TVT.2022.3229742.

  18. Li, J., Wang, H., Zhu, P., Wang, D., & You, X. (2023). Covariance-based activity detection with orthogonal pilot sequences for cell-free distributed massive MIMO systems. IEEE Transactions on Vehicular Technology, 72(1), 1307–1312. https://doi.org/10.1109/TVT.2022.3205062

    Article  Google Scholar 

  19. Gao, X., Li, Y., Cheng, W., Dong, L., & Liu, P. (2023). Secure optimal precoding for user-centric cell-free massive mimo system. IEEE Wireless Communications Letters, 12(1), 31–35. https://doi.org/10.1109/LWC.2022.3216050

    Article  Google Scholar 

  20. Zhang, Q., Zhang, J., & **, S. Grant-free random access in cell-free massive MIMO systems with ue detection thresholds: A stochastic geometry approach. IEEE transactions on vehicular technology. doi: https://doi.org/10.1109/TVT.2023.3237870.

  21. Sboui, L., Rezki, Z., Sultan, A., & Alouini, M. (2019). A new relation between energy efficiency and spectral efficiency in wireless communications systems. IEEE Wireless Communications, 26(3), 168–174. https://doi.org/10.1109/MWC.2019.1800161

    Article  Google Scholar 

  22. Akdeniz, M. R., Liu, Y., Samimi, M. K., Sun, S., Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter wave channel modeling and cellular capacity evaluation. Journal on Selected Areas in Communications, IEEE, 32(6), 1164–1179.

    Article  Google Scholar 

  23. Weiler, R. J., Peter, M., Keusgen, W., Kortke, A., & Wisotzki, M. (2015). Millimeter-wave channel sounding of outdoor ground reflections. IEEE Radio and Wireless Symposium (RWS), 2015, 95–97. https://doi.org/10.1109/RWS.2015.7129712

    Article  Google Scholar 

  24. Dutty, H. B. H., & Mowla, M. M. (2019). Channel modeling for forest backhaul networks using millimeter wave in 5G communications. 2019 3rd international conference on electrical, computer & telecommunication engineering (ICECTE) pp. 125–128. https://doi.org/10.1109/ICECTE48615.2019.9303570.

  25. Zhang, P., Li, J., Wang, H., Wang, H., & Hong, W. (2018). Indoor small-scale spatiotemporal propagation characteristics at multiple millimeter-wave bands. IEEE Antennas and Wireless Propagation Letters, 17(12), 2250–2254. https://doi.org/10.1109/LAWP.2018.2872051

    Article  Google Scholar 

  26. Li, S., Liu, Y., Lin, L., Sun, D., Yang S., & Sun, X. (2018). Simulation and modeling of millimeter-wave channel at 60 GHz in indoor environment for 5G wireless communication system. 2018 IEEE international conference on computational electromagnetics (ICCEM) pp. 1-3. https://doi.org/10.1109/COMPEM.2018.8496691

  27. Zaman, L., & Mowla, M. M. (2020). A millimeter wave channel modeling with spatial consistency in 5G systems. 2020 IEEE region 10 symposium (TENSYMP) pp. 1584–1587. https://doi.org/10.1109/TENSYMP50017.2020.9230975.

  28. Zhang, P., Yang, B., Yi, C., Wang, H., & You, X. (2020). Measurement-based 5G millimeter-wave propagation characterization in vegetated suburban macrocell environments. IEEE Transactions on Antennas and Propagation, 68(7), 5556–5567. https://doi.org/10.1109/TAP.2020.2975365

    Article  Google Scholar 

  29. G. J. Kerns, (2011). Introduction to probability and statistics using R. first edition book, ISBN: 978-0-557-24979-4

Download references

Funding

Funding source of this work is supported by the faculty of Electronic Engineering, Menoufia University, Menouf, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Shalaby.

Ethics declarations

Conflict of interest

There is no conflict between this work and other published work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalaby, M., Hussein, H.M., Shokair, M. et al. Performance Analysis and Simulation of Millimeter Wave Cell-Free mMIMO Networks. Wireless Pers Commun 131, 1495–1513 (2023). https://doi.org/10.1007/s11277-023-10501-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10501-5

Keywords

Navigation