Log in

Power System Reconfiguration in Distribution System for Loss Minimization Using Optimization Techniques: A Review

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Normally consumers faced so many power interruption problems in the power distribution network. The distribution network is interrupted because of the power loss problems occurs in the power system. Network Reconfiguration (NR) is one of the major approaches for loss minimization to satisfy the customers demand by modifying the structure of distribution network. The main aim of the NR is to attain a radial network that optimizes the losses in the network and some other various techniques are utilized. In literature, various algorithms have been determined for network reconfiguration problems. In past years, the reliability in distribution network has been developed for uninterrupted power supply to the consumers. It presents a classical introduction, bibliographical review, and related analysis of methods utilized for reconfiguration of the system for loss reduction so that the scholars can quickly analyze the literature, particularly in this field. The current review mainly focusing on the conventional, novel techniques, optimization algorithms for reconfiguration and optimal allocation of distributed generation plays a significant part in enhancing the efficiency and precision of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Code availability

Not applicable.

References

  1. Kalambe, S., & Agnihotri, G. (2014). Loss minimization techniques used in distribution network: Bibliographical survey. Renewable and sustainable energy reviews, 29, 184–200.

    Article  Google Scholar 

  2. Sarfi, R. J., Salama, M. M. A., & Chikhani, A. Y. (1994). A survey of the state of the art in distribution system reconfiguration for system loss reduction. Electric Power Systems Research, 31(1), 61–70.

    Article  Google Scholar 

  3. Merlin, A. (1975). Search for a minimum-loss operating spanning tree configuration for an urban power distribution system. In Proceedings of the 5th PSCC (Vol 1, pp. 1–18).

  4. Shirmohammadi, D., & Hong, H. W. (1989). Reconfiguration of electric distribution networks for resistive line losses reduction. IEEE Transactions on Power Delivery, 4(2), 1492–1498.

    Article  Google Scholar 

  5. Civanlar, S., Grainger, J. J., Yin, H., & Lee, S. S. H. (1988). Distribution feeder reconfiguration for loss reduction. IEEE Transactions on Power Delivery, 3(3), 1217–1223.

    Article  Google Scholar 

  6. Baran, M. E., & Wu, F. F. (1989). Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Power Engineering Review, 9(4), 101–102.

    Article  Google Scholar 

  7. Wagner, T. P., Chikhani, A. Y., & Hackam, R. (1991). Feeder reconfiguration for loss reduction: An application of distribution automation. IEEE Transactions on Power Delivery, 6(4), 1922–1933.

    Article  Google Scholar 

  8. Sarfi, R. J., Salama, M. M. A., Vannelli, A., & Chikhani, A. Y. (1993). Loss reduction in distribution systems: a new approach using partitioning techniques. In Conference record of the 1993 IEEE industry applications conference twenty-eighth IAS annual meeting, (pp. 1439–1444). IEEE.

  9. Kumar, K. S., & Jayabarathi, T. (2012). Power system reconfiguration and loss minimization for distribution systems using bacterial foraging optimization algorithm. International Journal of Electrical Power & Energy Systems, 36(1), 13–17.

    Article  Google Scholar 

  10. Naveen, S., Sathish Kumar, K., & Rajalakshmi, K. (2015). Distribution system reconfiguration for loss minimization using modified bacterial foraging optimization algorithm. International Journal of Electrical Power & Energy Systems, 69, 90–97.

    Article  Google Scholar 

  11. Pegado, R., Ñaupari, Z., Molina, Y., & Castillo, C. (2019). Radial distribution network reconfiguration for power losses reduction based on improved selective BPSO. Electric Power Systems Research, 169, 206–213.

    Article  Google Scholar 

  12. Duan, D.-L., Ling, X.-D., **ao-Yue, Wu., & Zhong, B. (2015). Reconfiguration of distribution network for loss reduction and reliability improvement based on an enhanced genetic algorithm. International Journal of Electrical Power & Energy Systems, 64, 88–95.

    Article  Google Scholar 

  13. Nguyen, T., & Truong, A. V. (2015). Distribution network reconfiguration for power loss minimization and voltage profile improvement using cuckoo search algorithm. International Journal of Electrical Power & Energy Systems, 68(2015), 233–242.

    Article  Google Scholar 

  14. Nguyen, T. T., & Nguyen, T. T. (2019). An improved cuckoo search algorithm for the problem of electric distribution network reconfiguration. Applied Soft Computing, 84, 105720.

    Article  Google Scholar 

  15. Abdelaziz, A. Y., Mohammed, F. M., Mekhamer, S. F., & Badr, M. A. L. (2009). Distribution systems reconfiguration using a modified particle swarm optimization algorithm. Electric Power Systems Research, 79(11), 1521–1530.

    Article  Google Scholar 

  16. Tyagi, A., Verma, A., & Bijwe, P. R. (2018). Reconfiguration for loadability limit enhancement of distribution systems. IET Generation, Transmission & Distribution, 12(1), 88–93.

    Article  Google Scholar 

  17. Gerez, C., Silva, L. I., Belati, E. A., Sguarezi Filho, A. J., & Costa, E. C. (2019). Distribution network reconfiguration using selective firefly algorithm and a load flow analysis criterion for reducing the search space. IEEE Access, 7, 67874–67888.

    Article  Google Scholar 

  18. Mena, A. J. G., & García, J. A. M. (2012). An efficient heuristic algorithm for reconfiguration based on branch power flows direction. International Journal of Electrical Power & Energy Systems, 41(1), 71–75.

    Article  Google Scholar 

  19. Imran, A. M., & Kowsalya, M. (2014). A new power system reconfiguration scheme for power loss minimization and voltage profile enhancement using fireworks algorithm. International Journal of Electrical Power & Energy Systems, 62, 312–322.

    Article  Google Scholar 

  20. Sultana, B., Mustafa, M. W., Sultana, U., & Bhatti, A. R. (2016). Review on reliability improvement and power loss reduction in distribution system via network reconfiguration. Renewable and sustainable energy reviews, 66, 297–310.

    Article  Google Scholar 

  21. Atteya, I., Ashour, H. A., Fahmi, N. R., & Strickland, D. R. (2017). Radial distribution network reconfiguration for power losses reduction using a modified particle swarm optimisation. CIRED-Open Access Proceedings Journal, 2017(1), 2505–2508.

    Article  Google Scholar 

  22. Ackermann, T., Andersson, G., & Söder, L. (2001). Distributed generation: A definition. Electric Power Systems Research, 57(3), 195–204.

    Article  Google Scholar 

  23. Viral, R., & Khatod, D. K. (2012). Optimal planning of distributed generation systems in distribution system: A review. Renewable and sustainable energy Reviews, 16(7), 5146–5165.

    Article  Google Scholar 

  24. Acharya, N., Mahat, P., & Mithulananthan, N. (2006). An analytical approach for DG allocation in primary distribution network. International Journal of Electrical Power & Energy Systems, 28(10), 669–678.

    Article  Google Scholar 

  25. Hung, D. Q., Mithulananthan, N., & Bansal, R. C. (2010). Analytical expressions for DG allocation in primary distribution networks. IEEE Transactions on energy conversion, 25(3), 814–820.

    Article  Google Scholar 

  26. Hung, D. Q., Mithulananthan, N., & Lee, K. Y. (2014). Optimal placement of dispatchable and non-dispatchable renewable DG units in distribution networks for minimizing energy loss. International Journal of Electrical Power & Energy Systems, 55, 179–186.

    Article  Google Scholar 

  27. Ha, M. P., Huy, P. D., & Ramachandaramurthy, V. K. (2017). A review of the optimal allocation of distributed generation: Objectives, constraints, methods, and algorithms. Renewable and Sustainable Energy Reviews, 75, 293–312.

    Article  Google Scholar 

  28. Arya, L. D., Koshti, A., & Choube, S. C. (2012). Distributed generation planning using differential evolution accounting voltage stability consideration. International Journal of Electrical Power & Energy Systems, 42(1), 196–207.

    Article  Google Scholar 

  29. Nguyen, T. T., Truong, A. V., & Phung, T. A. (2016). A novel method based on adaptive cuckoo search for optimal network reconfiguration and distributed generation allocation in distribution network. International Journal of Electrical Power & Energy Systems, 78, 801–815.

    Article  Google Scholar 

  30. Abdmouleh, Z., Gastli, A., Ben-Brahim, L., Haouari, M., & Al-Emadi, N. A. (2017). Review of optimization techniques applied for the integration of distributed generation from renewable energy sources. Renewable Energy, 113, 266–280.

    Article  Google Scholar 

  31. Wang, C., & Nehrir, M. H. (2004). Analytical approaches for optimal placement of distributed generation sources in power systems. IEEE Transactions on Power systems, 19(4), 2068–2076.

    Article  Google Scholar 

  32. Mahmoud, K., Yorino, N., & Ahmed, A. (2015). Optimal distributed generation allocation in distribution systems for loss minimization. IEEE Transactions on Power Systems, 31(2), 960–969.

    Article  Google Scholar 

  33. Ochoa, L. F., Padilha-Feltrin, A., & Harrison, G. P. (2006). Evaluating distributed generation impacts with a multiobjective index. IEEE Transactions on Power Delivery, 21(3), 1452–1458.

    Article  Google Scholar 

  34. Ochoa, L. F., Padilha-Feltrin, A., & Harrison, G. P. (2008). Evaluating distributed time-varying generation through a multiobjective index. IEEE Transactions on Power Delivery, 23(2), 1132–1138.

    Article  Google Scholar 

  35. Rueda-Medina, A. C., Franco, J. F., Rider, M. J., Padilha-Feltrin, A., & Romero, R. (2013). A mixed-integer linear programming approach for optimal type, size and allocation of distributed generation in radial distribution systems. Electric Power Systems Research, 97, 133–143.

    Article  Google Scholar 

  36. Wang, Z., Chen, B., Wang, J., Kim, J., & Begovic, M. M. (2014). Robust optimization based optimal DG placement in microgrids. IEEE Transactions on Smart Grid, 5(5), 2173–2182.

    Article  Google Scholar 

  37. Awad, A. S., El-Fouly, T. H., & Salama, M. M. (2014). Optimal distributed generation allocation and load shedding for improving distribution system reliability. Electric Power Components and Systems, 42(6), 576–584.

    Article  Google Scholar 

  38. Vahidinasab, V. (2014). Optimal distributed energy resources planning in a competitive electricity market: Multiobjective optimization and probabilistic design. Renewable Energy, 66, 354–363.

    Article  Google Scholar 

  39. Sheng, W., Liu, K.-Y., Liu, Y., Meng, X., & Li, Y. (2014). Optimal placement and sizing of distributed generation via an improved nondominated sorting genetic algorithm II. IEEE Transactions on Power Delivery, 30(2), 569–578.

    Article  Google Scholar 

  40. Ganguly, S., & Samajpati, D. (2015). Distributed generation allocation on radial distribution networks under uncertainties of load and generation using genetic algorithm. IEEE Transactions on Sustainable Energy, 6(3), 688–697.

    Article  Google Scholar 

  41. Devi, S., & Geethanjali, M. (2014). Optimal location and sizing determination of Distributed Generation and DSTATCOM using Particle Swarm Optimization algorithm. International Journal of Electrical Power & Energy Systems, 62, 562–570.

    Article  Google Scholar 

  42. Pereira, B. R., da Costa, G. R. M., Contreras, J., & Mantovani, J. R. S. (2016). Optimal distributed generation and reactive power allocation in electrical distribution systems. IEEE Transactions on Sustainable Energy, 7(3), 975–984.

    Article  Google Scholar 

  43. Arias, N. B., Franco, J. F., Lavorato, M., & Romero, R. (2017). Metaheuristic optimization algorithms for the optimal coordination of plug-in electric vehicle charging in distribution systems with distributed generation. Electric Power Systems Research, 142, 351–361.

    Article  Google Scholar 

  44. Dharageshwari, K., & Nayanatara, C. (2015). Multi objective optimal placement of multiple distributed generations in IEEE 33 bus radial system using simulated annealing. In 2015 international conference on circuits, power and computing technologies [ICCPCT-2015] (pp. 1–7). IEEE.

  45. Dong, W., Li, Y., & **ang, Ji. (2016). Optimal sizing of a stand-alone hybrid power system based on battery/hydrogen with an improved ant colony optimization. Energies, 9(10), 785.

    Article  Google Scholar 

  46. Ehsan, A., & Yang, Q. (2018). Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques. Applied Energy, 210, 44–59.

    Article  Google Scholar 

  47. Ochoa, L. F., & Harrison, G. P. (2010). Minimizing energy losses: Optimal accommodation and smart operation of renewable distributed generation. IEEE Transactions on Power Systems, 26(1), 198–205.

    Article  Google Scholar 

  48. Vovos, P. N., Harrison, G. P., Wallace, A. R., & Bialek, J. W. (2005). Optimal power flow as a tool for fault level-constrained network capacity analysis. IEEE Transactions on Power Systems, 20(2), 734–741.

    Article  Google Scholar 

  49. Al Abri, R. S., El-Saadany, E. F., & Atwa, Y. M. (2012). Optimal placement and sizing method to improve the voltage stability margin in a distribution system using distributed generation. IEEE Transactions on Power Systems, 28(1), 326–334.

    Article  Google Scholar 

  50. Bortignon, G. A., & El-Hawary, M. E. (1995). A review of capacitor placement techniques for loss reduction in primary feeders on distribution systems. In Proceedings 1995 Canadian conference on electrical and computer engineering (Vol. 2, pp. 684–687). IEEE.

  51. Baran, M., & Felix, FWu. (1989). Optimal sizing of capacitors placed on a radial distribution system. IEEE Transactions on Power Delivery, 4(1), 735–743.

    Article  Google Scholar 

  52. Segura, S., Romero, R., & Rider, M. J. (2010). Efficient heuristic algorithm used for optimal capacitor placement in distribution systems. International Journal of Electrical Power & Energy Systems, 32(1), 71–78.

    Article  Google Scholar 

  53. Aman, M. M., Jasmon, G. B., Bakar, A. H. A., Mokhlis, H., & Karimi, M. (2014). Optimum shunt capacitor placement in distribution system—A review and comparative study. Renewable and Sustainable Energy Reviews, 30, 429–439.

    Article  Google Scholar 

  54. Neagle, N. M., & Samson, D. R. (1956). (1956) Loss reduction from capacitors installed on primary feeders [includes discussion]. Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, 75(3), 950–959.

    Google Scholar 

  55. Cook, R. F. (1961). Optimizing the application of shunt capacitors for reactive-volt-ampere control and loss reduction. Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, 80(3), 430–441.

    Google Scholar 

  56. Schmill, J. V. (1965). Optimum size and location of shunt capacitors on distribution feeders. IEEE Transactions on Power Apparatus and Systems, 84(9), 825–832.

    Article  Google Scholar 

  57. Dura, H. (1968). Optimum number, location, and size of shunt capacitors in radial distribution feeders a dynamic programming approach. IEEE Transactions on Power Apparatus and Systems, 9, 1769–1774.

    Article  Google Scholar 

  58. Bae, Y. G. (1978). Analytical method of capacitor allocation on distribution primary feeders. IEEE Transactions on Power Apparatus and Systems, 4, 1232–1238.

    Article  Google Scholar 

  59. Grainger, J. J., & Lee, S. H. (1981). Optimum size and location of shunt capacitors for reduction of losses on distribution feeders. IEEE Transactions on Power Apparatus and Systems, 3, 1105–1118.

    Article  Google Scholar 

  60. Grainger, J. J., & Lee, S. H. (1982). Capacity release by shunt capacitor placement on distribution feeders: A new voltage-dependent model. IEEE Transactions on Power Apparatus and Systems, 5, 1236–1244.

    Article  Google Scholar 

  61. Bunch, J. B., Miller, R. D., & Wheeler, J. E. (1982). Distribution system integrated voltage and reactive power control. IEEE Transactions on Power Apparatus and Systems, 2, 284–289.

    Article  Google Scholar 

  62. Grainger, J. J., Civanlar, S., & Lee, S. H. (1983). Optimal design and control scheme for continuous capacitive compensation of distribution feeders. IEEE Transactions on Power Apparatus and Systems, 10, 3271–3278.

    Article  Google Scholar 

  63. Sirjani, R., & Jordehi, A. R. (2017). Optimal placement and sizing of distribution static compensator (D-STATCOM) in electric distribution networks: A review. Renewable and Sustainable Energy Reviews, 77, 688–694.

    Article  Google Scholar 

  64. Hussain, S. S., & Subbaramiah, M. An analytical approach for optimal location of DSTATCOM in radial distribution system. In 2013 international conference on energy efficient technologies for sustainability (pp. 1365–1369). IEEE.

  65. Farhoodnea, M., Mohamed, A., Shareef, H., & Zayandehroodi, H. (2013). Optimum D-STATCOM placement using firefly algorithm for power quality enhancement. In 2013 IEEE 7th international power engineering and optimization conference (PEOCO) (pp. 98–102). IEEE.

  66. Yuvaraj, T., Devabalaji, K. R., & Ravi, K. (2015). Optimal placement and sizing of DSTATCOM using harmony search algorithm. Energy Procedia, 79, 759–765.

    Article  Google Scholar 

  67. Taher, S. A., & Afsari, S. A. (2014). Optimal location and sizing of DSTATCOM in distribution systems by immune algorithm. International Journal of Electrical Power & Energy Systems, 60, 34–44.

    Article  Google Scholar 

  68. Yuvaraj, T., Ravi, K., & Devabalaji, K. R. (2017). DSTATCOM allocation in distribution networks considering load variations using bat algorithm. Ain Shams Engineering Journal, 8(3), 391–403.

    Article  Google Scholar 

  69. Gupta, A. R., & Kumar, A. (2016). Energy saving using D-STATCOM placement in radial distribution system under reconfigured network. Energy Procedia, 90, 124–136.

    Article  Google Scholar 

  70. de Oliveira, L. W., Carneiro, S., Jr., De Oliveira, E. J., Pereira, J. L. R., Silva, I. C., Jr., & Costa, J. S. (2010). Optimal reconfiguration and capacitor allocation in radial distribution systems for energy losses minimization. International Journal of Electrical Power & Energy Systems, 32(8), 840–848.

    Article  Google Scholar 

  71. Guimaraes, M. A. N., Castro, C. A., & Romero, R. (2010). Distribution systems operation optimisation through reconfiguration and capacitor allocation by a dedicated genetic algorithm. IET Generation, Transmission & Distribution, 4(11), 1213–1222.

    Article  Google Scholar 

  72. Kasaei, M. J.,& Gandomkar, M. (2010). Loss reduction in distribution network using simultaneous capacitor placement and reconfiguration with ant colony algorithm. In 2010 Asia-pacific power and energy engineering conference (pp. 1–4). IEEE.

  73. Rao, R. S. (2010). An hybrid approach for loss reduction in distribution systems using harmony search algorithm. International Journal of Electrical and Electronics Engineering, 4(7), 461–467.

    Google Scholar 

  74. Farahani, V., Vahidi, B., & Abyaneh, H. A. (2011). Reconfiguration and capacitor placement simultaneously for energy loss reduction based on an improved reconfiguration method. IEEE Transactions on Power Systems, 27(2), 587–595.

    Article  Google Scholar 

  75. Sedighizadeh, M., Dakhem, M., Sarvi, M., & Kordkheili, H. H. (2014). Optimal reconfiguration and capacitor placement for power loss reduction of distribution system using improved binary particle swarm optimization. International Journal of Energy and Environmental Engineering, 5(1), 1–11.

    Article  Google Scholar 

  76. Sayadi, F., Esmaeili, S., & Keynia, F. (2016). Feeder reconfiguration and capacitor allocation in the presence of non-linear loads using new P-PSO algorithm. IET Generation, Transmission & Distribution, 10(10), 2316–2326.

    Article  Google Scholar 

  77. Rao, R. S., Ravindra, K., Satish, K., & Narasimham, S. V. L. (2012). Power loss minimization in distribution system using network reconfiguration in the presence of distributed generation. IEEE Transactions on Power Systems, 28(1), 317–325.

    Article  Google Scholar 

  78. Rosseti, G. J., de Oliveira, E. J., de Oliveira, L. W., Silva, I. C., Jr., & Peres, W. (2013). Optimal allocation of distributed generation with reconfiguration in electric distribution systems. Electric Power Systems Research, 103, 178–183.

    Article  Google Scholar 

  79. Taher, S. A., & Karimi, M. H. (2014). Optimal reconfiguration and DG allocation in balanced and unbalanced distribution systems. Ain Shams Engineering Journal, 5(3), 735–749.

    Article  Google Scholar 

  80. Imran, A. M., Kowsalya, M., & Kothari, D. P. (2014). A novel integration technique for optimal network reconfiguration and distributed generation placement in power distribution networks. International Journal of Electrical Power & Energy Systems, 63, 461–472.

    Article  Google Scholar 

  81. Lotfipour, A., & Afrakhte, H. (2016). A discrete teaching–learning-based optimization algorithm to solve distribution system reconfiguration in presence of distributed generation. International Journal of Electrical Power & Energy Systems, 82, 264–273.

    Article  Google Scholar 

  82. Sambaiah, K. S., & Jayabarathi, T. (2019). Optimal reconfiguration and renewable distributed generation allocation in electric distribution systems. International Journal of Ambient Energy 1–14.

  83. Dogan, A., & Alci, M. (2019). Simultaneous optimization of network reconfiguration and DG installation using heuristic algorithms. Elektronika ir Elektrotechnika, 25(1), 8–13.

    Article  Google Scholar 

  84. Iqbal, F., Khan, M. T., & Siddiqui, A. S. (2018). Optimal placement of DG and DSTATCOM for loss reduction and voltage profile improvement. Alexandria Engineering Journal, 57(2), 755–765.

    Article  Google Scholar 

  85. Devabalaji, K. R., & Ravi, K. (2016). Optimal size and siting of multiple DG and DSTATCOM in radial distribution system using Bacterial Foraging Optimization Algorithm. Ain Shams Engineering Journal, 7(3), 959–971.

    Article  Google Scholar 

  86. Singh, B., & Yadav, M. K. (2018). GA for enhancement of system performance by DG incorporated with D-STATCOM in distribution power networks. Journal of Electrical Systems and Information Technology, 5(3), 388–426.

    Article  Google Scholar 

  87. Sannigrahi, S., & Acharjee, P. (2018). Maximization of system benefits with the optimal placement of DG and DSTATCOM considering load variations. Procedia Computer Science, 143, 694–701.

    Article  Google Scholar 

  88. Hung, D. Q., Mithulananthan, N., & Bansal, R. C. (2015). A combined practical approach for distribution system loss reduction. International Journal of Ambient Energy, 36(3), 123–131.

    Article  Google Scholar 

  89. Saonerkar, A. K., & Bagde, B. Y. (2014). Optimized DG placement in radial distribution system with reconfiguration and capacitor placement using genetic algorithm. In 2014 IEEE international conference on advanced communications, control and computing technologies (pp. 1077–1083). IEEE.

  90. Gallano, R. J. C., & Nerves, A. C. (2014). Multi-objective optimization of distribution network reconfiguration with capacitor and distributed generator placement. In TENCON 2014-2014 IEEE region 10 conference (pp. 1-6). IEEE.

  91. Tolabi, H. B., Ali, M. H., & Rizwan, M. (2014). Simultaneous reconfiguration, optimal placement of DSTATCOM, and photovoltaic array in a distribution system based on fuzzy-ACO approach. IEEE Transactions on Sustainable Energy, 6(1), 210–218.

    Article  Google Scholar 

  92. Ameli, A., Ahmadifar, A., Shariatkhah, M.-H., Vakilian, M., & Haghifam, M.-R. (2017). A dynamic method for feeder reconfiguration and capacitor switching in smart distribution systems. International Journal of Electrical Power & Energy Systems, 85, 200–211.

    Article  Google Scholar 

  93. Biswas, P. P., Suganthan, P. N., & Amaratunga, G. A. (2018). Distribution network reconfiguration together with distributed generator and shunt capacitor allocation for loss minimization. In 2018 IEEE congress on evolutionary computation (CEC) (pp. 1–7). IEEE.

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sathish Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ushashree, P., Kumar, K.S. Power System Reconfiguration in Distribution System for Loss Minimization Using Optimization Techniques: A Review. Wireless Pers Commun 128, 1907–1940 (2023). https://doi.org/10.1007/s11277-022-10026-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-10026-3

Keywords

Navigation