Log in

APC: Adaptive Power Control Technique for Multi-Radio Multi-Channel Cognitive Radio Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

With the increase in user demand for internet access on move, spectrum resource seems to deplete and leads to spectrum crunch. Recent researches reports that this spectrum crunch is not due to spectrum scarcity but due to spectrum underutilization because of legacy static spectrum allocation of spectrum bands. This spectrum utilization and efficiency can be improved by using Dynamic Spectrum Access (DSA) techniques, which correlate with cognitive radio technology in one way or the other. There are three basic approach of communication for cognitive radio technology: Inter-weaved approach, Underlay approach and Overlay approach. Extensive researches has been proposed so far based on the inter-weaved approach and little or negligible using underlay or overlay approach. Using these modes the cognitive users can coexist with the primary users at same geographic time and location. In this paper simple and unique Adaptive Power Control (APC) technique for underlay approach for cognitive radio mobile network is proposed. This techniques introduces a Power Adaptive Transmission (PAT) metric which overcomes three major issues. Firstly, this proposed techniques work efficiently over highly active licensed networks with marginal increased throughput of 0.2 Mbps. Secondly, APC this technique adapts to the requirement of cognitive user and Lastly, primary user power is monitored, to prevent interference and maintain the Quality of Service (QoS) of primary user. Under simulation testing the proposed APC technique outperforms various other underlay as well hybrid techniques for power control under cognitive radio environment with 11% increase in throughput and 32% decrease in delay using APC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18. https://doi.org/10.1109/98.788210.

    Article  Google Scholar 

  2. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220. https://doi.org/10.1109/JSAC.2004.839380.

    Article  Google Scholar 

  3. FCC spectrum policy task force. (2008). Report of spectrum efficiency working group [Available Online]. Second report and order, Federal Communications Commission, ET-Docket 04-186 and 02-380, Adopted November 4, 2008, Released November 14.

  4. Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2006). Next generation dynamic spectrum access cognitive radio wireless networks: A survey computer networks. Elsevier, 50, 2127–2159. https://doi.org/10.1016/j.comnet.2006.05.001.

    Article  MATH  Google Scholar 

  5. Srinivasa, S., & Jafar, S. A. (2007). Cognitive radios for dynamic spectrum access-the throughput potential of cognitive radio: A theoretical perspective. IEEE Communications Magazine, 45(5), 73–79. https://doi.org/10.1109/MCOM.2007.358852.

    Article  Google Scholar 

  6. **a, M., & Aissa, S. (2013). Underlay cooperative AF relaying in cellular networks: Performance and challenges. IEEE Communications Magazine, 51(12), 170–176. https://doi.org/10.1109/MCOM.2013.6685773.

    Article  Google Scholar 

  7. Jia, J., Zhang, J., & Zhang, Q. (2009). Cooperative relay for cognitive radio networks. In INFOCOM 2009, IEEE (pp. 2304-2312). IEEE. https://doi.org/10.1109/INFCOM.2009.5062156.

  8. Lu, L., Zhou, X., Onunkwo, U., & Li, G. Y. (2012). Ten years of research in spectrum sensing and sharing in cognitive radio. EURASIP Journal on Wireless Communications and Networking, 2012(1), 28.

    Article  Google Scholar 

  9. Dall’Anese, E., Kim, S. J., Giannakis, G. B., & Pupolin, S. (2011). Power control for cognitive radio networks under channel uncertainty. IEEE Transactions on Wireless Communications, 10(10), 3541–3551. https://doi.org/10.1109/TWC.2011.081711.110323.

    Article  Google Scholar 

  10. Su, W., Matyjas, J. D., & Batalama, S. (2012). Active cooperation between primary users and cognitive radio users in heterogeneous ad-hoc networks. IEEE Transactions on Signal Processing, 60(4), 1796–1805. https://doi.org/10.1109/TSP.2011.2181841.

    Article  MathSciNet  MATH  Google Scholar 

  11. Durowoju, O., Arshad, K., & Moessner, K. (2012). Distributed power control algorithm for cognitive radios with primary protection via spectrum sensing under user mobility. Ad Hoc Networks, 10(5), 740–751. https://doi.org/10.1016/j.adhoc.2011.02.005.

    Article  Google Scholar 

  12. Senthuran, S., Anpalagan, A., & Das, O. (2012). Throughput analysis of opportunistic access strategies in hybrid underlay—Overlay cognitive radio networks. IEEE Transactions on Wireless Communications, 11(6), 2024–2035. https://doi.org/10.1109/TWC.2012.032712.101209.

    Article  Google Scholar 

  13. Talay, A. C., & Altilar, D. T. (2012). RAC: Range adaptive cognitive radio networks. Computer Standards & Interfaces, 34(1), 24–30. https://doi.org/10.1016/j.csi.2011.04.002.

    Article  Google Scholar 

  14. Wang, J. T., & Lu, C. C. (2012). Throughput-based rate and power control for cognitive radio networks with receive diversity and error control. IET Communications, 6(17), 2848–2854. https://doi.org/10.1049/iet-com.2011.0528.

    Article  MathSciNet  Google Scholar 

  15. Sanchez, S. M., Souza, R. D., Fernandez, E. M., & Reguera, V. A. (2013). Rate and energy efficient power control in a cognitive radio ad hoc network. IEEE Signal Processing Letters, 20(5), 451–454. https://doi.org/10.1109/LSP.2013.2251630.

    Article  Google Scholar 

  16. Luo, C., Min, G., Yu, F. R., Chen, M., Yang, L. T., & Leung, V. C. (2013). Energy-efficient distributed relay and power control in cognitive radio cooperative communications. IEEE Journal on Selected Areas in Communications, 31(11), 2442–2452. https://doi.org/10.1109/JSAC.2013.131129.

    Article  Google Scholar 

  17. Salim, S., Moh, S., & Chung, I. (2013). Transmission power control aware routing in cognitive radio ad hoc networks. Wireless Personal Communications, 71(4), 2713–2724. https://doi.org/10.1007/s11277-012-0966-y.

    Article  Google Scholar 

  18. Umar, R., & Sheikh, A. U. (2013). A comparative study of spectrum awareness techniques for cognitive radio oriented wireless networks. Physical Communication, 9, 148–170. https://doi.org/10.1016/j.phycom.2012.07.005.

    Article  Google Scholar 

  19. Zou, J., **ong, H., Wang, D., & Chen, C. W. (2013). Optimal power allocation for hybrid overlay/underlay spectrum sharing in multiband cognitive radio networks. IEEE Transactions on Vehicular Technology, 62(4), 1827–1837. https://doi.org/10.1109/TVT.2012.2235152.

    Article  Google Scholar 

  20. Parsaeefard, S., & Sharafat, A. R. (2013). Robust distributed power control in cognitive radio networks. IEEE Transactions on Mobile Computing, 12(4), 609–620. https://doi.org/10.1109/TMC.2012.28.

    Article  Google Scholar 

  21. Wang, Y., Ren, P., Gao, F., & Su, Z. (2014). A hybrid underlay/overlay transmission mode for cognitive radio networks with statistical quality-of-service provisioning. IEEE Transactions on Wireless Communications, 13(3), 1482–1498. https://doi.org/10.1109/TWC.2013.010214.130797.

    Article  Google Scholar 

  22. Usman, M., & Koo, I. (2014). Access strategy for hybrid underlay–overlay cognitive radios with energy harvesting. IEEE Sensors Journal, 14(9), 3164–3173. https://doi.org/10.1109/JSEN.2014.2324565.

    Article  Google Scholar 

  23. Patil, D. P., & Wadhai, V. M. (2014, March). NS2 based advanced routing model for cognitive radio networks from dynamic spectrum management perception. In 2014 IEEE students’ conference on electrical, electronics and computer science (SCEECS) (pp. 1–5). IEEE. https://doi.org/10.1109/SCEECS.2014.6804450.

  24. Xu, Y., & Zhao, X. (2014). Robust probabilistic distributed power control algorithm for underlay cognitive radio networks under channel uncertainties. Wireless Personal Communications, 78(2), 1297–1312. https://doi.org/10.1007/s11277-014-1818-8.

    Article  Google Scholar 

  25. Tang, N., Mao, S., & Kompella, S. (2014, October). Power control in full duplex underlay cognitive radio networks: A control theoretic approach. In Military communications conference (MILCOM), 2014 IEEE (pp. 949–954). IEEE. https://doi.org/10.1109/MILCOM.2014.163.

  26. Xu, Y., & Zhao, X. (2014). Robust power control for underlay cognitive radio networks under probabilistic quality of service and interference constraints. IET Communications, 8(18), 3333–3340. https://doi.org/10.1049/iet-com.2014.0300.

    Article  Google Scholar 

  27. Singh, J. S. P., Rai, M. K., Singh, J., & Kang, A. S. (2014). Trade-off between AND and OR detection method for cooperative sensing in cognitive radio. In IEEE international advance computing conference (IACC), Gurgaon (pp. 395–399). https://doi.org/10.1109/IAdCC.2014.6779356.

  28. Shah, G. A., Alagoz, F., Fadel, E. A., & Akan, O. B. (2014). A spectrum-aware clustering for efficient multimedia routing in cognitive radio sensor networks. IEEE Transactions on Vehicular Technology, 63(7), 3369–3380. https://doi.org/10.1109/TVT.2014.2300141.

    Article  Google Scholar 

  29. Abdulghafoor, O. B., Ismail, M., Nordin, R., & Shaat, M. M. (2014). Fast and distributed power control algorithm in underlay cognitive radio networks. Journal of Communications, 9(8), 634–643. https://doi.org/10.12720/jcm.9.8.634-643.

    Article  Google Scholar 

  30. Kashyap, S., & Mehta, N. B. (2015). Power gain estimation and its impact on binary power control in underlay cognitive radio. IEEE Wireless Communications Letters, 4(2), 193–196. https://doi.org/10.1109/LWC.2015.2394496.

    Article  Google Scholar 

  31. Singh, J. S. P., Singh, R., Rai, M. K., Singh, J., & Kang, A. S. (2015). Cooperative sensing for cognitive radio: A powerful access method for shadowing environment. Wireless Personal Communications, 80(4), 1363–1379. https://doi.org/10.1007/s11277-014-2088-1.

    Article  Google Scholar 

  32. Mayers, A. M., Benavidez, P. J., Raju, G. V. S., Akopian, D., & Jamshidi, M. M. (2015). A closed-loop transmission power control system using a nonlinear approximation of power-time curve. IEEE Systems Journal, 9(3), 1011–1019. https://doi.org/10.1109/JSYST.2014.2320100.

    Article  Google Scholar 

  33. Salem, T. M., Abdel-Mageid, S., El-kader, S. M. A., & Zaki, M. (2015). A quality of service distributed optimizer for cognitive radio sensor networks. Pervasive and Mobile Computing, 22, 71–89. https://doi.org/10.1016/j.pmcj.2015.06.002.

    Article  Google Scholar 

  34. Bradai, A., Singh, K., Rachedi, A., & Ahmed, T. (2015). EMCOS: Energy-efficient mechanism for multimedia streaming over cognitive radio sensor networks. Pervasive and Mobile Computing, 22, 16–32. https://doi.org/10.1016/j.pmcj.2015.06.015.

    Article  Google Scholar 

  35. Aslam, S., Shahid, A., & Lee, K. G. (2015). Primary user behavior aware spectrum allocation scheme for cognitive radio networks. Computers & Electrical Engineering, 42, 135–147. https://doi.org/10.1016/j.compeleceng.2014.05.008.

    Article  Google Scholar 

  36. Bukhari, S. H. R., Siraj, S., & Rehmani, M. H. (2016). NS-2 based simulation framework for cognitive radio sensor networks. Wireless Networks. https://doi.org/10.1007/s11276-016-1418-5.

    Article  Google Scholar 

  37. Ewaisha, A. E., & Tepedelelioğlu, C. (2016). Joint scheduling and power control for delay guarantees in heterogeneous cognitive radios. IEEE Transactions on Wireless Communications, 15(9), 6298–6309. https://doi.org/10.1109/TWC.2016.2582822.

    Article  Google Scholar 

  38. Wu, Y., & Cardei, M. (2016). Multi-channel and cognitive radio approaches for wireless sensor networks. Computer Communications, 94, 30–45. https://doi.org/10.1016/j.comcom.2016.08.010.

    Article  Google Scholar 

  39. Preetham, C. S., & Prasad, M. S. G. (2016). Hybrid overlay/underlay transmission scheme with optimal resource allocation for primary user throughput maximization in cooperative cognitive radio networks. Wireless Personal Communications, 91(3), 1123–1136. https://doi.org/10.1007/s11277-016-3516-1.

    Article  Google Scholar 

  40. Tang, N., Mao, S., & Kompella, S. (2016). On power control in full duplex underlay cognitive radio networks. Ad Hoc Networks, 37, 183–194. https://doi.org/10.1016/j.adhoc.2015.08.018.

    Article  Google Scholar 

  41. Jiang, X., Shen, L., Xu, X., Bao, J., Yao, Y. D., & Zhao, Z. (2016). Power allocation optimisation for high throughput with mixed spectrum access based on interference evaluation strategy in cognitive relay networks. IET Communications, 10(12), 1428–1435. https://doi.org/10.1049/iet-com.2015.0849.

    Article  Google Scholar 

  42. Tsakmalis, A., Chatzinotas, S., & Ottersten, B. (2016). Centralized power control in cognitive radio networks using modulation and coding classification feedback. IEEE Transactions on Cognitive Communications and Networking, 2(3), 223–237. https://doi.org/10.1109/TCCN.2016.2613562.

    Article  Google Scholar 

  43. Sagar, B. V., Madhu, R., Ramesh, S., & Krishna, T. G. S. (2016). Path loss and outturn analysis of LTE-A femtocells under co-channel interference using dynamic schemes. In 2016 international conference on signal processing, communication, power and embedded system (SCOPES) (pp. 705–710). IEEE. https://doi.org/10.1109/SCOPES.2016.7955530.

  44. Singh, J. S. P., & Rai, M. K. (2017). Cognitive radio intelligent-MAC (CR-i-MAC): Channel-diverse contention free approach for spectrum management. Telecommunication Systems, 64(3), 495–508. https://doi.org/10.1007/s11235-016-0188-9.

    Article  Google Scholar 

  45. Yan, J., & Liu, Y. (2017). A dynamic SWIPT approach for cooperative cognitive radio networks. IEEE Transactions on Vehicular Technology, 66(12), 11122–11136. https://doi.org/10.1109/TVT.2017.2734966.

    Article  Google Scholar 

  46. Deka, S. K., & Sarma, N. (2017). Opportunity prediction at MAC-layer sensing for ad-hoc cognitive radio networks. Journal of Network and Computer Applications, 82, 140–151. https://doi.org/10.1016/j.jnca.2016.11.025.

    Article  Google Scholar 

  47. Soleimanpour-moghadam, M., & Talebi, S. (2017). Jointly optimal rate control and total transmission power for cooperative cognitive radio system. IET Communications, 11(11), 1679–1688. https://doi.org/10.1049/iet-com.2016.1094.

    Article  Google Scholar 

  48. Kalabarige, L. R., & Chilukuri, S. (2017). Supporting QoS differentiation in energy-constrained cognitive radio networks. Wireless Personal Communications, 97(2), 2459–2474. https://doi.org/10.1007/s11277-017-4617-1.

    Article  Google Scholar 

  49. Lavanya, S., & Bhagyaveni, M. A. (2017). Design of SOP based cross-layered opportunistic routing protocol for CR ad-hoc networks. Wireless Personal Communications, 96(4), 6543–6556. https://doi.org/10.1007/s11277-017-4494-7.

    Article  Google Scholar 

  50. Goli-Bidgoli, S., & Movahhedinia, N. (2017). A trust-based framework for increasing MAC layer reliability in cognitive radio VANETs. Wireless Personal Communications, 95(3), 2873–2893. https://doi.org/10.1007/s11277-017-3968-y.

    Article  Google Scholar 

  51. Tahir, M., Habaebi, M. H., & Islam, M. R. (2017). Novel distributed algorithm for coalition formation for enhanced spectrum sensing in cognitive radio networks. AEU-International Journal of Electronics and Communications, 77, 139–148. https://doi.org/10.1016/j.aeue.2017.04.033.

    Article  Google Scholar 

  52. Singh, J. S. P., & Rai, M. K. (2018). CROP: Cognitive radio ROuting Protocol for link quality channel diverse cognitive networks. Journal of Network and Computer Applications, 104(1), 48–60. https://doi.org/10.1016/j.jnca.2017.12.014.

    Article  Google Scholar 

  53. Mamidi, R., & Sundru, A. (2018). Throughput analysis in proposed cooperative spectrum sensing network with an improved energy detector scheme over Rayleigh fading channel. AEU-International Journal of Electronics and Communications, 83, 416–426. https://doi.org/10.1016/j.aeue.2017.09.008.

    Article  Google Scholar 

  54. Kumar, A., Saha, S., & Bhattacharya, R. (2018). Wavelet transform based novel edge detection algorithms for wideband spectrum sensing in CRNs. AEU-International Journal of Electronics and Communications, 84, 100–110. https://doi.org/10.1016/j.aeue.2017.11.024.

    Article  Google Scholar 

  55. Sharma, A., Aggarwal, M., & Ahuja, S. (2018). Performance analysis of DF-relayed cognitive underlay networks over EGK fading channels. AEU-International Journal of Electronics and Communications, 83, 533–540. https://doi.org/10.1016/j.aeue.2017.10.038.

    Article  Google Scholar 

  56. Askari, M., & Vakili, V. T. (2018). Maximizing the minimum achievable rates in cognitive radio networks subject to stochastic constraints. AEU-International Journal of Electronics and Communications, 92, 146–156. https://doi.org/10.1016/j.aeue.2018.04.025.

    Article  Google Scholar 

  57. Singh, J. S. P., Rai, M. K., Kumar, G., Singh, R., Kim, H. J., & Kim, T. H. (2018). Advanced multiresolution wavelet based wideband spectrum sensing technique for cognitive radio. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2018/1908536.

    Article  Google Scholar 

  58. Fenton, L. (1960). The sum of log-normal probability distributions in scatter transmission systems. IRE Transactions on Communications Systems, 8(1), 57–67. https://doi.org/10.1109/TCOM.1960.1097606.

    Article  Google Scholar 

  59. Chiang, M., Tan, C. W., Palomar, D. P., O’neill, D., & Julian, D. (2007). Power control by geometric programming. IEEE Transactions on Wireless Communications, 6(7), 2640–2651. https://doi.org/10.1109/TWC.2007.05960.

    Article  Google Scholar 

  60. Cheng, G., Liu, W., Li, Y., & Cheng, W. (2007). Spectrum aware on-demand routing in cognitive radio networks. In 2nd IEEE international symposium on new frontiers in dynamic spectrum access networks, 2007. DySPAN 2007 (pp. 571–574). IEEE. https://doi.org/10.1109/DYSPAN.2007.80.

  61. Zhu, G. M., Akyildiz, I. F., & Kuo, G. S. (2008, November). STOD-RP: A spectrum-tree based on-demand routing protocol for multi-hop cognitive radio networks. In Global telecommunications conference, 2008. IEEE GLOBECOM 2008. IEEE (pp. 1–5). IEEE. https://doi.org/10.1109/GLOCOM.2008.ECP.592.

  62. Chowdhury, K. R., & Felice, M. D. (2009). Search: A routing protocol for mobile cognitive radio ad-hoc networks. Computer Communications, 32(18), 1983–1997. https://doi.org/10.1016/j.comcom.2009.06.011.

    Article  Google Scholar 

  63. Majumder, T., Mishra, R. K., Sinha, A., Singh, S. S., & Sahu, P. K. (2018). Congestion control in cognitive radio networks with event-triggered sliding mode. AEU-International Journal of Electronics and Communications, 90, 155–162. https://doi.org/10.1016/j.aeue.2018.04.013.

    Article  Google Scholar 

  64. Chaudhari, S., & Cabric, D. (2019). Power control and frequency band selection policies for underlay MIMO cognitive radio. IEEE Transactions on Cognitive Communications and Networking, 5(2), 304–317. https://doi.org/10.1109/TCCN.2019.2904266.

    Article  Google Scholar 

  65. Gu, B., Zhang, C., Wang, H., Yao, Y., & Tan, X. (2019). Power control for cognitive M2M communications underlaying cellular with fairness concerns. IEEE Access, 7, 80789–80799. https://doi.org/10.1109/ACCESS.2019.2914157.

    Article  Google Scholar 

  66. Zhuang, Y., Li, X., Ji, H., Zhang, H., & Leung, V. C. (2020). Optimal resource allocation for RF-powered underlay cognitive radio networks with ambient backscatter communication. IEEE Transactions on Vehicular Technology, 69(12), 15216–15228. https://doi.org/10.1109/TVT.2020.3037152.

    Article  Google Scholar 

  67. Diab, R. A., Bastaki, N., & Abdrabou, A. (2020). A survey on routing protocols for delay and energy-constrained cognitive radio networks. IEEE Access, 8, 198779–198800. https://doi.org/10.1109/ACCESS.2020.3035325.

    Article  Google Scholar 

  68. Tayel, A. F., Rabia, S. I., Abd El-Malek, A. H., & Abdelrazek, A. M. (2021). Throughput maximization of hybrid access in multi-class cognitive radio networks with energy harvesting. IEEE Transactions on Communications, 69(5), 2962–2974. https://doi.org/10.1109/TCOMM.2021.3059862.

    Article  Google Scholar 

  69. Bletsas, A., Shin, H., & Win, M. Z. (2007). Cooperative communications with outage-optimal opportunistic relaying. IEEE Transactions on Wireless Communications, 6(9), 3450–3460. https://doi.org/10.1109/TWC.2007.06020050.

    Article  Google Scholar 

  70. Prasad, M., Siddaiah, P., & Reddy, L. P. (2009, January). Analysis of different direction of arrival (DOA) estimation techniques using smart antenna in wireless communications. In Proceedings of the international conference on advances in computing, communication and control (pp. 639–642). ACM. https://doi.org/10.1145/1523103.1523233.

  71. Bansal, G., Hossain, M. J., & Bhargava, V. K. (2008). Optimal and suboptimal power allocation schemes for OFDM-based cognitive radio systems. IEEE Transactions on Wireless Communications, 7(11), 4710–4718. https://doi.org/10.1109/T-WC.2008.07091.

    Article  Google Scholar 

  72. Cognitive Radio Cognitive Networks. (2021). https://faculty.uml.edu//tricia_chigan/Research/CRCN_Simulator.htm. Accessed August 08, 2021.

  73. Network Simulator-2 (ns2). (2021). http://www.isi.edu/nsnam/ns/. Accessed August 08, 2021.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jai Sukh Paul Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J.S.P. APC: Adaptive Power Control Technique for Multi-Radio Multi-Channel Cognitive Radio Networks. Wireless Pers Commun 122, 3603–3632 (2022). https://doi.org/10.1007/s11277-021-09103-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09103-w

Keywords

Navigation