Log in

Role-Based Channel Hop** Algorithm for a Cognitive Radio Network in Asynchronous Environment

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Cognitive radio network (CRN) has been recognized by researchers to solve the spectrum shortage problem, where the unlicensed users opportunistically exploit the idle licensed channels for data transmission. Prior to the data transmission, the SUs should rendezvous on an available idle licensed channel to establish a link or to exchange control information without causing interference to the co-located licensed channels. However, the dynamic behavior of channels and its availability make the rendezvous more challenging. A blind rendezvous on the available channels without any centralized unit, or a common control channel is preferable to address issues like long-time blocking, control channel saturation, and scalability in a congested network. In this paper, a blind rendezvous for a specific CRN is proposed, where a Role-Based Channel Hop** is introduced to achieve guaranteed rendezvous in an asynchronous environment. Analytical study shows that for N available channels, the maximum time to rendezvous is \(N+\lfloor \frac{N}{2}\rfloor\), degree of rendezvous is N, maximum conditional time to rendezvous is \(N^2\) and Channel loading is \(\frac{1}{N}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material (data transparency)

Not applicable.

References

  1. Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Compputer Networks, 50, 2127–2159.

    Article  MATH  Google Scholar 

  2. Akyildiz, I. F., Lee, W.-Y., & Chowdhury, K. R. (2009). CRAHNs: Cognitive radio ad hoc networks. Ad Hoc Networks, 7(5), 810–836.

    Article  Google Scholar 

  3. Le, L., & Hossain, E. (2008). A mac protocol for opportunistic spectrum access in cognitive radio networks. In 2008 IEEE wireless communications and networking conference (pp. 1426–1430).

  4. Brik, V., Rozner, E., Banerjee, S., & Bahl, P. (2005). DSAP: A protocol for coordinated spectrum access. In First IEEE international symposium on new frontiers in dynamic spectrum access networks, DySPAN (pp. 611–614).

  5. Perez-Romero, J., Sallent, O., Agusti, R., & Giupponi, L. (2007). A novel on-demand cognitive pilot channel enabling dynamic spectrum allocation. In 2nd IEEE international symposium on new frontiers in dynamic spectrum access networks (pp. 46–54).

  6. Sampath, A., Dai, H., Zheng, H., & Zhao, B. Y. (2007). Multi-channel jamming attacks using cognitive radios. In16th international conference on computer communications and networks (pp. 352–357).

  7. Yang, B. (2020). A highly-random hop** sequence for jamming-resilient channel rendezvous in distributed cognitive radio networks. Computers & Security, 96, 101809.

    Article  Google Scholar 

  8. Ghafoor, S., Sreenan, C. J., & Brown, K. N. (2020). A cognitive radio-based fully blind multihop rendezvous protocol for unknown environments. Ad Hoc Networks, 107, 102261.

    Article  Google Scholar 

  9. de Sousa, C. O., Passos, D., Balbi, H. D., Carrano, R. C., & Albuquerque, C. (2020). BiRD a novel bi-dimensional design to multi-channel continuous rendezvous in cognitive networks. IEEE Transactions on Cognitive Communications and Networking, 6(3), 1031–1043.

    Article  Google Scholar 

  10. Lin, Z., Liu, H., Chu, X., & Leung, Y. (2011). Jump-stay based channel-hop** algorithm with guaranteed rendezvous for cognitive radio networks. In Proceedings IEEE INFOCOM (pp. 2444–2452).

  11. Tahidul Islam, Md., Kandeepan, S., & Evans, R. (2021). Multi-radio based rendezvous technique for heterogeneous cognitive radio sensor network. Sensors, 21(9), 2997.

    Article  Google Scholar 

  12. Bian, K., & Park, J. (2011). Asynchronous channel hop** for establishing rendezvous in cognitive radio networks. In proceedings IEEE INFOCOM (pp 236–240).

  13. Theis, N. C., Thomas, R. W., & DaSilva, L. A. (2011). Rendezvous for cognitive radios. IEEE Transactions on Mobile Computing, 10(2), 216–227.

    Article  Google Scholar 

  14. Shin, J., Yang, D., & Kim, C. (2010). A channel rendezvous scheme for cognitive radio networks. IEEE Communications Letters, 14(10), 954–956.

    Article  Google Scholar 

  15. Wang, Y.-T., Yang, G.-C., Huang, S.-H., Chang, M.-K., & Kwong, W. C. (2018). Multi-MTTR asynchronous–asymmetric channel-hop** sequences for scalable cognitive radio networks. IEEE Transactions on Cognitive Communications and Networking, 4(4), 692–703.

    Article  Google Scholar 

  16. Kao, C.-C., & Yang, W.-L. (2014). Energy efficient system-on-chip design for wireless body area sensor network. Electric Power Components and Systems, 42(7), 737–745.

    Article  Google Scholar 

  17. Chang, G., Huang, J., & Wang, Y. (2015). Matrix-based channel hop** algorithms for cognitive radio networks. IEEE Transactions on Wireless Communications, 14(5), 2755–2768.

    Article  Google Scholar 

  18. Lin, Z., Liu, H., Chu, X., & Leung, Y. (2013). Enhanced jump-stay rendezvous algorithm for cognitive radio networks. IEEE Communications Letters, 17(9), 1742–1745.

    Article  Google Scholar 

  19. Shin, J., Yang, D., & Kim, C. (2010). A channel rendezvous scheme for cognitive radio networks. IEEE Communications Letters, 14(10), 954–956.

    Article  Google Scholar 

  20. Gu, Z., Hua, Q.-S., Wang, Y., & Lau, F. C. M. (2013). Nearly optimal asynchronous blind rendezvous algorithm for cognitive radio networks. In IEEE international conference on sensing, communications and networking (SECON) (pp. 371–379).

  21. Gu, Z., Shen, T., Wang, Y., & Lau, F. C. M. (2020). Efficient rendezvous for heterogeneous interference in cognitive radio networks. IEEE Transactions on Wireless Communications, 19(1), 91–105.

    Article  Google Scholar 

  22. Tan, X. J., Wang, J., & Yuan, Y. (2019). Difference-set-based channel hop** for minimum-delay blind rendezvous in multi-radio cognitive radio networks. IEEE Transactions on Vehicular Technology, 68(5), 4918–4932.

    Article  Google Scholar 

  23. Chuang, I., Wu, H., Lee, K., & Kuo, Y. (2013). Alternate hop-and-wait channel rendezvous method for cognitive radio networks. In Proceedings IEEE INFOCOM (pp. 746–754).

  24. Chang, G., Teng, W., Chen, H., & Sheu, J. (2014). Novel channel-hop** schemes for cognitive radio networks. IEEE Transactions on Mobile Computing, 13(2), 407–421.

    Article  Google Scholar 

  25. Al Mqdashi, A., Sali, A., Noordin, N., Hashim, S. J., & Nordin, R. (2018). Efficient matrix-based channel hop** schemes for blind rendezvous in distributed cognitive radio networks. Sensors, 18(12), 4360.

    Article  Google Scholar 

  26. Li, A., Han, G., & Ohtsuki, T. (2019). A fast blind scheme with full rendezvous diversity for heterogeneous cognitive radio networks. IEEE Transactions on Cognitive Communications and Networking, 5(3), 805–818.

    Article  Google Scholar 

  27. Wang, K., Chen, L., Bian, K., Wang, W., & Zhou, P. (2019). On cooperative channel rendezvous in cognitive radio networks. IEEE Access, 7, 57500–57515.

    Article  Google Scholar 

  28. Bian, K., Park, J., & Chen, R. (2011). Control channel establishment in cognitive radio networks using channel hop**. IEEE Journal on Selected Areas in Communications, 29(4), 689–703.

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arunanshu Mahapatro.

Ethics declarations

Conflict of interest

No conflict of interest.

Code availability (software application or custom code)

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sa, S., Mahapatro, A. Role-Based Channel Hop** Algorithm for a Cognitive Radio Network in Asynchronous Environment. Wireless Pers Commun 127, 2083–2102 (2022). https://doi.org/10.1007/s11277-021-08771-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08771-y

Keywords

Navigation