Log in

Low Complexity Shalvi-Weinstein Algorithm

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Blind equalization can effectively reduce the intersymbol interference introduced by the frequency selective channel in the absence of the training sequence. The Shalvi-Weinstein Algorithm (SWA) performs better under most channels, especially for highly distorted ones compared with constant modulus algorithm (CMA) or its modified versions. The disadvantage of the SWA is the high complexity resulting from the computation of the inverse matrix. A low complexity SWA based on dichotomous coordinate descent algorithm is proposed in the paper, whose computation complexity is on the same order of magnitude as the CMA. Besides the low complexity, the proposed algorithm also avoids the possible numerical error resulting from the computation of the matrix inversion. Moreover, a low complexity of decision directed algorithm based on RLS is presented for a dual mode blind equalization. Simulations verify the effectiveness of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shalvi, O., & Weinstein, E. (1990). New criteria for blind deconvolution of nonminimum phase systems(channels). IEEE Transactions on Information Theory, 42, 1145–1156.

    MATH  Google Scholar 

  2. Ahmed, S., Khan, Y., & Wahab, A. (2019). A review on training and blind equalization algorithms for wireless communications. Wireless Personal Communications, 108, 1759–1783.

    Article  Google Scholar 

  3. Johnson, R., Jr., Schniter, P., et al. (1998). Blind equalization using the constant modulus criterion: A review. Proceedings of the IEEE, 86(10), 1927–1950.

    Article  Google Scholar 

  4. Miranda, M. D., Silva, M., & Nascimento, V. H. (2008). Avoiding divergence in the Shalvi-Weinstein algorithm. IEEE Transactions on Signal Processing, 56(11), 5403–5413.

    Article  MathSciNet  Google Scholar 

  5. Pavan, F. R. M., Silva, M. T. M., & Maria, D. (2019). Miranda, performance analysis of the multiuser Shalvi-Weinstein algorithm. Signal Processing, 163, 153–165.

    Article  Google Scholar 

  6. Abrar, S., & Nandi, A. K. (2010). Blind equalization of square-QAM signals: A multimodulus approach. IEEE Transactions on Communications, 58(6), 1674–1685.

    Article  Google Scholar 

  7. Filho, J. M., Miranda, M. D., et al. (2012). A regional multimodulus algorithm for blind equalizationof QAM signals: Introduction and steady-state analysis. Signal Processing, 92, 2643–2656.

    Article  Google Scholar 

  8. Zakharov, Y. V., & Tozer, T. C. (2004). Multiplication-free iterative algorithm for LS problem. Electronics Letters, 40(9), 567–569.

    Article  Google Scholar 

  9. Zakharov, Y. V., White, G. P., & Liu, J. (2008). Low-complexity RLS algorithms using dichotomous coordinate descent iterations. IEEE Transactions on Signal Processing, 56(7), 3150–3161.

    Article  MathSciNet  Google Scholar 

  10. Liu, J., Zakharov, Y. V., & Weaver, B. (2009). Architecture and FPGA design of dichotomous coordinate descent algorithms. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(11), 2425–2438.

    Article  MathSciNet  Google Scholar 

  11. Chen, T., & Wang, S. (2020). An efficient nonlinear dichotomous coordinate descent adaptive algorithm based on random Fourier features. IEEE Signal Processing Letters, 27, 1804–1808.

    Article  Google Scholar 

  12. Silva, M., & Arenas-Garcia, J. (2013). A soft-switching blind equalization scheme via convex combination of adaptive filters. IEEE Transactions on Signal Processing, 61(5), 1171–1182.

    Article  MathSciNet  Google Scholar 

  13. Jianqiu, S., **ngguang, L., Kang, C., Wei, C., & Ming, C. (2020). A novel CMA+DD_LMS blind equalization algorithm for underwater acoustic communication. The Computer Journal, 63(6), 974–981.

    Article  Google Scholar 

  14. Azim, A. W., Abrar, S., et al. (2015). Steady-state performance of multimodulus blind equalizers. Signal Processing, 108, 509–520.

    Article  Google Scholar 

  15. Simon, H. (2013). Adaptive filter theory (5th ed.). Pearson Publisher.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Sun.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned} \Delta {\mathbf{R}}\left( n \right) * {\mathbf{w}}\left( {n - 1} \right) = & \left[ {{\mathbf{R}}\left( n \right) - {\mathbf{R}}\left( {n - 1} \right)} \right] * {\mathbf{w}}\left( {n - 1} \right) \\ = & \left[ {\lambda * {\mathbf{R}}\left( {n - 1} \right) + {\mathbf{x}}\left( n \right) * {\mathbf{x}}^{H} \left( n \right) - {\mathbf{R}}\left( {n - 1} \right)} \right] * {\mathbf{w}}\left( {n - 1} \right) \\ = & \left( {\lambda - 1} \right) * {\mathbf{R}}\left( {n - 1} \right) * {\mathbf{w}}\left( {n - 1} \right) + {\mathbf{x}}\left( n \right) * {\mathbf{x}}^{H} \left( n \right) * {\mathbf{w}}\left( {n - 1} \right) \\ = & \left( {\lambda - 1} \right) * \left[ {{\mathbf{q}}\left( {n - 1} \right) - {\mathbf{r}}\left( {n - 1} \right)} \right] + y\left( n \right)^{*} * {\mathbf{x}}\left( n \right) \\ \end{aligned}$$

Substituting the above equation into the following equation.

$$\begin{aligned} {\mathbf{q}}_{0} \left( n \right) = & {\mathbf{r}}\left( {n - 1} \right) + \Delta {\mathbf{q}}\left( n \right) - \Delta {\mathbf{R}}\left( n \right) * {\mathbf{\hat{w}}}\left( {n - 1} \right) \\ = & {\mathbf{r}}\left( {n - 1} \right) + \Delta {\mathbf{q}}\left( n \right) - \left( {\lambda - 1} \right) * \left[ {{\mathbf{q}}\left( {n - 1} \right) - {\mathbf{r}}\left( {n - 1} \right)} \right] - y\left( n \right)^{*} * {\mathbf{x}}\left( n \right) \\ = & \lambda * {\mathbf{r}}\left( {n - 1} \right) + \left[ {\Delta {\mathbf{q}}\left( n \right) + {\mathbf{q}}\left( {n - 1} \right)} \right] - \lambda * {\mathbf{q}}\left( {n - 1} \right) - y\left( n \right)^{*} * {\mathbf{x}}\left( n \right) \\ = & \lambda * {\mathbf{r}}\left( {n - 1} \right) + {\mathbf{q}}\left( n \right) - \lambda * {\mathbf{q}}\left( {n - 1} \right) - y\left( n \right)^{*} * {\mathbf{x}}\left( n \right) \\ = & \lambda * {\mathbf{r}}\left( {n - 1} \right) + \left| {y\left( n \right)} \right|^{2} * y^{*} \left( n \right) * {\mathbf{x}}\left( n \right)/\beta + {\mathbf{\rho }}\left( n \right)/\beta - y\left( n \right)^{*} * {\mathbf{x}}\left( n \right) \\ = & \lambda * {\mathbf{r}}\left( {n - 1} \right) + \left[ {\left( {\left| {y\left( n \right)} \right|^{2} - \beta } \right) * y^{*} \left( n \right) * {\mathbf{x}}\left( n \right) + {\mathbf{\rho }}\left( n \right)} \right]/\beta \\ = & \lambda * {\mathbf{r}}\left( {n - 1} \right) + \left[ {e_{{SWA}}^{*} \left( n \right) * {\mathbf{x}}\left( n \right) + {\mathbf{\rho }}\left( n \right)} \right]/\beta \\ = & \lambda * {\mathbf{r}}\left( {n - 1} \right) + \left[ {e_{{SWA}}^{*} \left( n \right) * {\mathbf{x}}\left( n \right) + c_{{SWA}} * {\kern 1pt} e_{{SWA}}^{*} \left( n \right) * {\mathbf{x}}\left( n \right)} \right]/\beta {\kern 1pt} \\ = & \lambda * {\mathbf{r}}\left( {n - 1} \right) + \left( {1 + c_{{SWA}} } \right) * {\kern 1pt} e_{{SWA}}^{*} \left( n \right) * {\mathbf{x}}\left( n \right)/\beta \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Zhang, L., Jia, C. et al. Low Complexity Shalvi-Weinstein Algorithm. Wireless Pers Commun 120, 3265–3275 (2021). https://doi.org/10.1007/s11277-021-08612-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08612-y

Keywords

Navigation