Log in

Performance Improvement of Optical Multiple Access CDMA Network Using a New Three-Dimensional (Spectral/Time/Spatial) Code

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a novel code named three dimensional single weight zero cross correlation (3D-SWZCC) code has been developed for spectral/time/spatial (S/T/S) encoding in non coherent optical code division multiple access (OCDMA) systems. This novel code is based on one dimensional (1D) and two dimensional (2D) SWZCC code already proposed. According to simulation results, it is really observed that 3D-OCDMA systems employing SWZCC code can resist against both thermal noise and phase induced intensity noise in other words; shot noise can be totally neglected. Mover, the proposed code can improve the system capacity up to 6, 8 and 2.98 times and save the receiver power level to reach − 8.39 dBm and − 1.5 dBm going by from (1D) to (2D) to (3D) respectively as well as this code has outperformed the already existing codes such 3D-perfect difference (3D-PD), 3D-perfect difference/multi diagonal (3D-PD/MD) and 3D-dynamic cyclic shift (3D-DCS/MD) and 3D-MD codes in terms of system’s capacity 4.82, 4.13, 3.75 and 1.29 times respectively that satisfies the optical communication networks requirements. In accordance with simulation results, 3D-OCDMA system based on SWZCC code achieves good performance and meets optical communication requirements due to low BER and high Q-factor it provides, equal to \({10}^{-27}\) and 10 dB respectively for 1 Gbps data rate and a distance of 50 km up to 70 km.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Cherifi, A., Jellali, N., Najjar, M., Aljunid, S. A., & Bouazza, B. S. (2019). Development of a novel two-dimensional-SWZCC: Code for spectral/spatial optical CDMA system. Optics and Laser Technology Journal, 109(2018), 233–240. https://doi.org/10.1016/j.optlastec.2018.07.078.

    Article  Google Scholar 

  2. Alayedi, M., Cherifi, A., Hamida, A. F., Rahmani, M., Attalah, Y., & Bouazza, B. S. (2020). Design improvement to reduce noise effect in CDMA multiple access optical systems based on new (2-D) code using spectral/spatial half-matrix technique. Journal of Optical Communications. https://doi.org/10.1515/joc-2020-0069.

    Article  Google Scholar 

  3. Bouazza, B. S., Legoff, S. Y., Garadi, A., Perrine, C., & Vauzelle, R. (2014). A novel constellation sha** technique for bit-interleaved coded modulation. Wireless Personal Communications, 74(2), 519–528. https://doi.org/10.1007/s11277-013-1303-9.

    Article  Google Scholar 

  4. Alayedi, M., Cherifi, A., & Hamida, A. F. (2019). Performance enhancement of SAC-OCDMA system using a new optical code. In Proceedings—2019 6th International Conference on Image and Signal Processing and their Applications, ISPA 2019. https://doi.org/10.1109/ISPA48434.2019.8966912.

  5. Abd, S. A., Mottaleb, E., Fayed, H. A., Abd, A., Aziz, E., & Aly, M. H. (2014). SAC- OCDMA system using different detection techniques. IOSR Journal of Electronics and Communication Engineering, 9(2), 55–60.

    Google Scholar 

  6. Mrabet, H., Cherifi, A., Raddo, T., Dayoub, I., & Haxha, S. (2020). A comparative study of asynchronous and synchronous OCDMA systems. IEEE Systems Journal. https://doi.org/10.1109/jsyst.2020.2991678.

    Article  Google Scholar 

  7. Alayedi, M., Cherifi, A., Hamida, A. F., Rashidi, C. B. M., & Bouazza, B. S. (2020). Performance improvement of multi access OCDMA system based on a new zero cross correlation code. In IOP Conference Series: Materials Science and Engineering (vol. 767). https://doi.org/10.1088/1757-899X/767/1/012042.

  8. Kakaee, M. H., Seyedzadeh, S., Adnan, F. H., Barirah Ahmad Anas, S., & Mokhtar, M. (2014). Development of multi-service (MS) for SAC-OCDMA systems. Optics and Laser Technology, 60, 49–55. https://doi.org/10.1016/j.optlastec.2014.01.002.

    Article  Google Scholar 

  9. Cherifi, A., Yagoubi, B., Bouazza, B. S., & Dahman, A. O. (2016). New method for the construction of optical zero cross correlation code using block matrices in OCDMA-OFDM system. Journal of Telecommunication, Electronic and Computer Engineering, 8(1), 33–39.

    Google Scholar 

  10. Cherifi, A., Bouazza, B. S., Al-ayedi, M., Aljunid, S. A., & Rashidi, C. B. M. (2018). Development and performance improvement of a new two-dimensional spectral/spatial code using the pascal triangle rule for OCDMA system. Journal of Optical Communications. https://doi.org/10.1515/joc-2018-0052.

    Article  Google Scholar 

  11. Tsai, C. (2006). Optical wavelength/spatial coding system based on quadratic congruence code matrices. IEEE Photonics Technology Letters, 18(17), 1843–1845. https://doi.org/10.1109/LPT.2006.881210.

    Article  Google Scholar 

  12. Mrabet, H., Dayoub, I., Attia, R., & Haxha, S. (2009). Performance improving of OCDMA system using 2-D optical codes with optical SIC receiver. Journal of Lightwave Technology, 27(21), 4744–4753. https://doi.org/10.1109/JLT.2009.2026293.

    Article  Google Scholar 

  13. Yin, H., & Richardson, D. J. (2009). Optical code division multiple access communication networks: Theory and applications. In Optical Code Division Multiple Access Communication Networks: Theory and Applications. https://doi.org/https://doi.org/10.1007/978-3-540-68468-8.

  14. Kaur, N., Goyal, R., & Rani, M. (2017). A review on spectral amplitude coding optical code division multiple access. Journal of Optical Communications, 38(1), 77–85. https://doi.org/10.1515/joc-2016-0033.

    Article  Google Scholar 

  15. Mostafa, S., Mohamed, A. E. N. A., El-Samie, F. E. A., & Rashed, A. N. Z. (2017). Performance evaluation of SAC-OCDMA system in free space optics and optical fiber system based on different types of codes. Wireless Personal Communications, 96(2), 2843–2861. https://doi.org/10.1007/s11277-017-4327-8.

    Article  Google Scholar 

  16. Sharma, T., & Kumar Maddila, R. (2020). Optical code construction based on enhanced quantum logic gate (EQLG) technique for spectral amplitude coding optical CDMA systems. Wireless Personal Communications, 113(4), 2587–2609. https://doi.org/10.1007/s11277-020-07342-x.

    Article  Google Scholar 

  17. Wei, Z., Shalaby, H. M. H., & Ghafouri-Shiraz, H. (2001). Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA systems. Journal of Lightwave Technology, 19(9), 1274–1281. https://doi.org/10.1109/50.948274.

    Article  Google Scholar 

  18. Lin, C., Wu, J., & Yang, C. (2005). Noncoherent spatial/spectral optical CDMA system with two-dimensional perfect difference codes. Journal of Lightwave Technology, 23(12), 3966–3980.

    Article  Google Scholar 

  19. Imtiaz, W. A., Ahmed, H. Y., Zeghid, M., Sharief, Y., & Usman, M. (2019). Design and implementation of two-dimensional enhanced multi-diagonal code for high cardinality OCDMA-PON. Arabian Journal for Science and Engineering, 44(8), 7067–7084. https://doi.org/10.1007/s13369-019-03789-8.

    Article  Google Scholar 

  20. Mostafa, S., Mohamed, A. E.-N. A., El-Samie, F. E. A., & Rashed, A. N. Z. (2019). Cyclic shift code for SAC-OCDMA using fiber Bragg-grating.

  21. Sharma, T., Maddila, R. K., & Aljunid, S. A. (2019). Simulative investigation of spectral amplitude coding based OCDMA system using quantum logic gate code with NAND and direct detection techniques. Current Optics and Photonics, 3(6), 531–540. https://doi.org/10.3807/COPP.2019.3.6.531.

    Article  Google Scholar 

  22. Yin, H., Ma, L., Li, H., & Zhu, L. (2010). A new family of 2D wavelength/time codes with large cardinality for incoherent spectral amplitude coding OCDMA networks and analysis of its performance. Photonic Network Communications, 19(2), 204–211. https://doi.org/10.1007/s11107-009-0225-7.

    Article  Google Scholar 

  23. Din Keraf, N., Aljunid, S. A., Anuar, M. S., Rashidi, C. B. M., & Ehkan, P. (2016). Performance of 2-D hybrid FCC-MDW code on OCDMA system with the presence of phase induced intensity noise. ARPN Journal of Engineering and Applied Sciences, 11(22), 13203–13208.

    Google Scholar 

  24. Yeh, B. C., Lin, C. H., Yang, C. L., & Wu, J. (2009). Noncoherent spectral/spatial optical CDMA system using 2-D diluted perfect difference codes. Journal of Lightwave Technology, 27(13), 2420–2432. https://doi.org/10.1109/JLT.2008.2010721.

    Article  Google Scholar 

  25. Sihmar, A., & Gupta, N. (2014). Design and performance analysis of 3D W/T/P MPR OCDMA system. International Journal of Current Engineering and Technology, 4(3), 2653–2656.

    Google Scholar 

  26. Yeh, B., Lin, C., Wu, J., & Fellow, L. (2009). Noncoherent spectral/time/spatial optical CDMA system using 3-D perfect difference codes. Journal of Lightwave Technology, 27(6), 744–759.

    Article  Google Scholar 

  27. Kadhim, R. A., Fadhil, H. A., Aljunid, S. A., & Razalli, M. S. (2015). Performance enhancement of a three dimensional OCDMA systems based on a new code. Journal of Theoretical and Applied Information Technology, 81(3), 589–599.

    Google Scholar 

  28. Jellali, N., Najjar, M., Ferchichi, M., & Rezig, H. (2017). Three-dimensional multi-diagonal codes for OCDMA system. Optik International Journal for Light and Electron Optics, 145, 428–435. https://doi.org/10.1016/j.ijleo.2017.07.057.

    Article  Google Scholar 

  29. Jellali, N., Najjar, M., Ferchichi, M., & Janyani, V. (2019). Performance enhancement of the 3D OCDMA system by using dynamic cyclic shift and multi-diagonal codes. Photonic Network Communications, 37(1), 63–74. https://doi.org/10.1007/s11107-018-0793-5.

    Article  Google Scholar 

  30. Cherifi, A., Mrabet, H., & Seddik, B. (2020). Performance enhancement of multiple access 3D-OCDMA networks using a pascal triangle codes. Optical and Quantum Electronics, 52(2), 1–16. https://doi.org/10.1007/s11082-020-2246-5.

    Article  Google Scholar 

  31. Mostafa, S., Mohamed, A. E. N. A., El-Samie, F. E. A., & Rashed, A. N. Z. (2015). Eradication of multiple access interference using a modified multi-service code for SAC–OCDMA. Wireless Personal Communications, 83(2), 855–872. https://doi.org/10.1007/s11277-015-2430-2.

    Article  Google Scholar 

  32. Mostafa, S., Mohamed, A. E. N. A., Abd El-Samie, F. E., & Rashed, A. N. Z. (2015). Performance analysis of diagonal eigenvalue unity (DEU) code using NAND subtraction and spectral direct detection techniques and its use with triple-play-services in SAC-OCDMA. Wireless Personal Communications, 85(4), 1831–1849. https://doi.org/10.1007/s11277-015-2869-1.

    Article  Google Scholar 

  33. Abdlkarem, N. H., Abro, F. R., Das, B., Abdullah, M. F. L., & Chowdhry, B. S. (2019). Development of optical code division multiple access based system using spectral amplitude coding via fiber Bragg gratings (FBGs). Wireless Personal Communications, 108(2), 729–749. https://doi.org/10.1007/s11277-019-06426-7.

    Article  Google Scholar 

Download references

Acknowledgements

This article is supported by the General Directorate of Scientific Research and Technological Development, (DGRSDT) Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohanad Alayedi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alayedi, M., Cherifi, A., Hamida, A.F. et al. Performance Improvement of Optical Multiple Access CDMA Network Using a New Three-Dimensional (Spectral/Time/Spatial) Code. Wireless Pers Commun 118, 2675–2698 (2021). https://doi.org/10.1007/s11277-021-08149-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08149-0

Keywords

Navigation