Log in

A New UTD Based Time-Domain Solution for UWB Diffraction in 3-D Environments

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a new time-domain (TD) solution is proposed for analyzing the diffraction of ultra wideband (UWB) signals in three dimensional (3-D) scenarios. In this sense, the solution is based on uniform theory of diffraction (UTD) where the diffraction has been considered by obstacles like 3-D wedge and building. The TD solution is derived with the help of frequency-domain (FD) diffraction coefficient existing in the literature that can be used for arbitrary positions of transmitter (Tx) and receiver (Rx). Considering soft and hard polarizations, the TD expressions are obtained for both amplitude diffraction (i.e., single diffraction) and slope diffraction (i.e., double diffraction). The accuracy of the proposed solution is confirmed by comparing the TD results with the rigorous Maliuzhinets solution and also with the numerical inverse fast Fourier transform (IFFT) of the corresponding FD results. The results are shown for diffraction by objects made up of perfectly electrical conducing (PEC) and dielectric materials. It is obserevd that the TD solution exhibits symetery and reciprocity property and thus can predict the diffracted field for any arbitrary position of Tx and Rx. The generalized behavior of the TD solution is confirmed by employing different kinds of excitation pulses at the Tx. Channel impulse response (CIR) is also studied to analyze the pulse shape distortion. Finally it is shown that the proposed TD solution is computationally more efficient than the FD solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Di Benedetto, M. G., & Giancola, G. (2004). Understanding ultra wide band radio fundamentals. Upper Saddle River, NJ, USA: Prentice Hall.

  2. Nekoogar, F. (2005). Ultra-wideband communications: fundamentals and applications. Upper Saddle River, NJ, USA: Prentice Hall.

    Google Scholar 

  3. Yajnanarayana, V., & Händel, P. (2017). Joint estimation of TOA and PPM symbols using sub-Nyquist sampled IR-UWB signal. IEEE Communications Letters, 21(4), 949–952.

    Article  Google Scholar 

  4. Yu, K., Wen, K., Li, Y., Zhang, S., & Zhang, K. (2019). A novel NLOS mitigation algorithm fr UWB localization in harsh indoor environments. IEEE Transactions on Vehicular Technology, 68(1), 686–699.

    Article  Google Scholar 

  5. Sangodoyin, S., & Molisch, A. F. (2018). Impact of body mass index on ultrawideband MIMO BAN channels–measurements and statistical model. IEEE Transactions on Wireless Communications, 17(9), 6067–6081.

    Article  Google Scholar 

  6. Sangodoyin, S., & Molisch, A. F. (2018). A measurement-based model of BMI impact on UWB multi-antenna PAN and B2B channels. IEEE Transactions on Communications, 66(12), 6494–6510.

    Article  Google Scholar 

  7. Leelatien, P., Ito, K., Saito, K., Sharma, M., & Alomainy, A. (2018). Channel characteristics and wireless telemetry performance of transplanted organ monitoring system using ultrawideband communication. IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology, 2(2), 94–101.

    Article  Google Scholar 

  8. Sharma, A., Zuazola, I. J. G., Martnez, R., Perallos, A., & Batchelor, J. C. (2019). Channel-based antenna synthesis for improved in-vehicle UWB MB-OFDM communications. IET Microwaves, Antennas & Propagation, 13(9), 1358–1367.

    Article  Google Scholar 

  9. Briso, C., Calvo, C., & Xu, Y. (2019). UWB propagation measurements and modeling in large indoor environments. IEEE Access, 7, 41913–41920.

    Article  Google Scholar 

  10. Molisch, A. F. (2005). Ultrawideband propagation channels-theory, measurement, and modeling. IEEE Transactions on Vehicular Technology, 54(5), 1528–1545.

    Article  Google Scholar 

  11. Jemai, J., Eggers, P. C. F., Pedersen, G. F., & Kürner, T. (2009). Calibration of a UWB sub-band channel model using simulated annealing. IEEE Transactions on Antennas and Propagation, 57(10), 3439–3443.

    Article  Google Scholar 

  12. Qiu, R. C., Zhou, C., & Liu, Q. (2005). Physics-based pulse distortion for ultra-wideband signals. IEEE Transactions on Vehicular Technology, 54(5), 1546–1555.

    Article  Google Scholar 

  13. Zhou, C., & Qiu, R. C. (2007). Pulse distortion caused by cylinder diffraction and its impact on UWB communications. IEEE Transactions on Vehicular Technology, 56(4), 2385–2391.

    Article  Google Scholar 

  14. Qiu, R. C. (2006). A generalized time domain multipath channel and its application in ultra-wideband (UWB) wireless optimal receiver—part III: System performance analysis. IEEE Transactions on Wireless Communications, 5(10), 2685–2695.

    Article  Google Scholar 

  15. Gorniak, P., & Bandurski, W. (2008). Direct time domain analysis of an UWB pulse distortion by convex objects with the slope diffraction included. IEEE Transactions on Antennas and Propagation, 56(9), 3036–3044.

    Article  Google Scholar 

  16. Fathy, A., Newagy, F., & Anis, W. R. (2019). Performance evaluation of UWB massive MIMO channels with favorable propagation features. IEEE Access, 7, 147010–147020.

    Article  Google Scholar 

  17. Umul, Y. Z. (2018). Wave diffraction by a right-angled interface between resistive half and whole planes. International Journal of Electronics and Communications (AEU), 84, 57–61.

    Article  Google Scholar 

  18. Jacob, M., Priebe, S., Dickhoff, R., Kleine-Ostmann, T., Schrader, T., & Kurner, T. (2012). Diffraction in mm and sub-mm wave indoor propagation channels. IEEE Transactions on Microwave Theory and Techniques, 60(3), 833–844.

    Article  Google Scholar 

  19. Rappaport, T. S., MacCartney, G. R., Sun, J. S., Yan, H., & Deng, S. (2017). Small-scale, local area, and transitional millimeter wave propagation for 5G communications. IEEE Transactions on Antennas and Propagation, 65(12), 6474–6490.

    Article  Google Scholar 

  20. Ghaddar, M., Mabrouk, I. B., Nedil, M., Hettak, K., & Talbi, L. (2019). Deterministic modeling of 5G millimeter-wave communication in an underground mine tunnel. IEEE Access, 7, 116519–116528.

    Article  Google Scholar 

  21. Kouyoumjian, R. G., & Pathak, P. H. (1974). A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proceedings of the IEEE, 62(11), 1448–1461.

    Article  Google Scholar 

  22. Luebbers, R. J. (1989). A heuristic UTD slope diffraction coefficient for rough lossy wedges. IEEE Transactions on Antennas and Propagation, 37(2), 206–211.

    Article  Google Scholar 

  23. Holm, P. D. (2000). A new heuristic UTD diffraction coefficient for nonperfectly conducting wedges. IEEE Transactions on Antennas and Propagation, 48(8), 1211–1219.

    Article  Google Scholar 

  24. El-Sallabi, H. M., & Vainikainen, P. (2005). Improvements to diffraction coefficient for non-perfectly conducting wedges. IEEE Transactions on Antennas and Propagation, 53(9), 3105–3109.

    Article  Google Scholar 

  25. Schettino, D. N., Moreira, F. J. S., Borges, K. L., & Rego, C. G. (2007). Novel heuristic UTD coefficients for the characterization of radio channels. IEEE Transactions on Magnetics, 43(4), 1301–1304.

    Article  Google Scholar 

  26. Karousos, A., & Tzaras, C. (2008). Multiple time-domain diffraction for UWB signals. IEEE Transactions on Antennas and Propagation, 56(5), 1420–1427.

    Article  Google Scholar 

  27. Han, T., & Long, Y. (2010). Time-domain UTD-PO analysis of a UWB pulse distortion by multiple-building diffraction. IEEE Antennas and Wireless Propagation Letters, 9, 795–798.

    Article  Google Scholar 

  28. Liu, P., Tan, J., & Long, Y. (2011). Time domain UTD-PO solution for the multiple diffraction of spherical waves for UWB signals. IEEE Transactions on Antennas and Propagation, 59(4), 1420–1424.

    Article  MathSciNet  Google Scholar 

  29. Han, T., & Long, Y. (2011). TD solution based on UTD-PO for multiple-building diffraction with shadowing caused by a wedge-shaped hill for UWB signals. Microwave and Optical Technology Letters, 53(2), 426–429.

    Article  Google Scholar 

  30. Schettino, D. N., Moreira, F. J. S., & Rego, C. G. (2010). Heuristic UTD coefficients for electromagnetic scattering by lossy conducting wedges. Microwave and Optical Technology Letters, 52(12), 2657–2662.

    Article  Google Scholar 

  31. Soni, S., & Bhattacharya, A. (2010). New heuristic diffraction coefficient for modeling of wireless channel. Progress in Electromagnetics Research C, 12, 125–137.

    Article  Google Scholar 

  32. Rodriguez, I. R., Rodriguez, J. V., & Llacer, L. J. (2018). Validation with measurements of plane and spherical-wave UTD-PO propagation models which assume flat-topped obstacles. International Journal of Electronics and Communications (AEU), 85, 174–178.

    Article  Google Scholar 

  33. Zhao, X., Rekanos, I. T., Vainikainen, P. (2003). A recommended Maliuzhinets diffraction coefficient for right angle lossy wedges. In Proceedings of the 2003 5th European Personal Mobile Communications Conference, Glasgow, UK, pp. 195–198.

  34. Osipov, A. V. (2005). A simple approximation of the Maliuzhinets function for describing wedge diffraction. IEEE Transactions on Antennas and Propagation, 53(8), 2773–2776.

    Article  Google Scholar 

  35. Barnes, P. R., & Tesche, F. M. (1991). On the direct calculataion of a transient plane wave reflected from a finitely conducting half plane. IEEE Transactions on Electromagnetic Compatibility, 33(2), 90–96.

    Article  Google Scholar 

  36. Liu, P., Wang, J., & Long, Y. (2009). Time-domain double diffraction for UWB signals. In PIERS Proceedings, Bei**g China, pp. 848–852.

  37. Ghavami, M., Michael, L. B., & Kohno, R. (2004). Ultra wideband signals and systems in communication engineering. Chichester, UK: Wiley.

    Book  Google Scholar 

  38. Muqaibel, A., Safaai-Jazi, A., Bayram, A., Attiya, A. M., & Riad, S. M. (2005). Ultrawideband through-the-wall propagation. IEE Proceedings - Microwaves Antennas and Propagation, 152(6), 581–588.

    Article  Google Scholar 

  39. **g, M., Qin-yu, Z., & Nai-tong, Z. (2009). Impact of IR-UWB waveform distortion on NLOS localization system. In Proceedings of the 2009 IEEE International Conference on Ultra-Wideband, Vancouver, BC, Canada, pp. 123–128.

  40. Yang, W., Qinyu, Z., Naitong, Z., & Peipei, Z. (2007). Transmission characteristics of ultra-wide band impulse signals. In Proceedings of the 2007 International Conference on Wireless Communications, Networking and Mobile Computing, Shanghai, China, pp. 550–553.

  41. Karousos, A., Koutitas, G., & Tzaras, C. (2008). Transmission and reflection coefficients in time-domain for a dielectric slab for UWB signals. In Proceedings of the VTC Spring 2008 - IEEE Vehicular Technology Conference, Singapore, pp. 455–458.

  42. Brigham, E. O. (1988). The fast fourier transform and its applications. Englewood Cliffs, NJ, USA: Prentice Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bajrang Bansal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, B. A New UTD Based Time-Domain Solution for UWB Diffraction in 3-D Environments. Wireless Pers Commun 118, 2365–2382 (2021). https://doi.org/10.1007/s11277-021-08130-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08130-x

Keywords

Navigation