Log in

Enabling sustainable green communication in three-tier 5G ultra dense HetNet with sleep cycle modulated energy harvesting

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The recent upsurge of data-demanding applications has necessitated a paradigm shift in deployment scenario in the direction of Multi-tier Ultra-Dense Heterogeneous networks (UDHN), which involve the dense deployment of more than one tier of small cells under-laying traditional macro cellular networks. However, higher data rates and the dense deployment of Small cell eNodeBs (SeNBs) elicit a possible escalation of network energy consumption which stirs up the mobile operators' operating expenditure. To deal with this, primarily, in this work, we present the Strategic Slee** Policy of the SeNBs based on M/M/1 queuing theory and investigate its impact in reducing the power consumption of the proposed three-tier UDHN which consists of one tier of Macro eNodeB and two tiers of SeNBs based on performance metrics like Energy Efficiency and Area Energy Consumption Ratio. Further, we also introduce a novel Sleep Cycle Modulated Energy Harvesting Technique for SeNBs to ensure proper utilization of energy resources. An analytical model based on Continuous Time Markov Chain is also developed to evaluate the Energy Utilization of the proposed SCMEH method. The comprehensive performance analysis reveals that the implementation of integrated SCMEH enabled SeNBs under HetNet can not only guarantee QoS requirements under concurrent time-varying urban tele-traffic conditions but also ensure Sustainable Green Communication by radically controlling the estimated power consumption per hour basis throughout a day.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Algorithm 2
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Alamu, O., Gbenga-Ilori, A., Adelabu, M., Imoize, A., & Ladipo, O. (2020). Energy efficiency techniques in ultra-dense wireless heterogeneous networks: An overview and outlook. Engineering Science and Technology, an International Journal, 23(6), 1308–1326.

    Article  Google Scholar 

  2. Cisco, U. (2020). Cisco annual internet report (2018–2023). White paper, 10(1), 1–35.

    Google Scholar 

  3. IBEF. Telecommunication Report March 2022. tech. rep., Indian Brand Equity Foundation; 2022.

  4. Chochliouros, I. P., Kourtis, M. A., Spiliopoulou, A. S., et al. (2021). Energy efficiency concerns and trends in future 5G network infrastructures. Energies, 14(17), 5392.

    Article  Google Scholar 

  5. Kazi, B. U., & Wainer, G. A. (2019). Next generation wireless cellular networks: Ultra-dense multi-tier and multi-cell cooperation perspective. Wireless Networks, 25, 2041–2064.

    Article  Google Scholar 

  6. Dhillon, H. S., Ganti, R. K., Baccelli, F., & Andrews, J. G. (2012). Modeling and analysis of K-tier downlink heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 30(3), 550–560.

    Article  Google Scholar 

  7. Saker, L., Micallef, G., Elayoubi, S. E., & Scheck, H. O. (2012). Impact of picocells on the capacity and energy efficiency of mobile networks. Annals of telecommunications-annales des télécommunications, 67(3), 133–146.

    Article  Google Scholar 

  8. Sidiq, S., Sheikh, J. A., Mustafa, F., & Malik, B. A. (2022). A new method of hybrid optimization of small cell range development and density for energy efficient ultra-dense networks. Transactions on Emerging Telecommunications Technologies, 33(7), e4476.

    Article  Google Scholar 

  9. Matinmikko-Blue, M., Yrjölä, S., Ahokangas, P., Ojutkangas, K., & Rossi, E. (2021). 6G and the UN SDGs: Where is the Connection? Wireless Personal Communications, 121(2), 1339–1360.

    Article  Google Scholar 

  10. Salahdine, F., Opadere, J., Liu, Q., Han, T., Zhang, N., & Wu, S. (2021). A survey on sleep mode techniques for ultra-dense networks in 5G and beyond. Computer Networks, 201, 108567.

    Article  Google Scholar 

  11. GSMA . 2019 Mobile Industry Impact Report: Sustainable Development Goals. 2019.

  12. Srivastava, A., Gupta, M. S., & Kaur, G. (2020). Energy efficient transmission trends towards future green cognitive radio networks (5G): Progress, taxonomy and open challenges. Journal of Network and Computer Applications, 168, 102760.

    Article  Google Scholar 

  13. Alsharif, M. H., Nordin, R., Abdullah, N. F., & Kelechi, A. H. (2018). How to make key 5G wireless technologies environmental friendly: A review. Transactions on Emerging Telecommunications Technologies, 29(1), e3254.

    Article  Google Scholar 

  14. Yao, M., Sohul, M. M., Ma, X., Marojevic, V., & Reed, J. H. (2019). Sustainable green networking: Exploiting degrees of freedom towards energy-efficient 5G systems. Wireless Networks, 25(3), 951–960.

    Article  Google Scholar 

  15. Wu, J., Zhang, Y., Zukerman, M., & Yung, E. K. (2015). Energy-efficient base-stations sleep-mode techniques in green cellular networks: A survey. IEEE communications surveys & tutorials., 17(2), 803–826.

    Article  Google Scholar 

  16. Liu, Q., & Zhang, Z. (2020). The analysis of coverage probability, ASE and EE in heterogeneous ultra-dense networks with power control. Digital Communications and Networks., 6(4), 524–533.

    Article  Google Scholar 

  17. López-Pérez, D., De Domenico, A., Piovesan, N., **nli, G., Bao, H., Qitao, S., & Debbah, M. (2022). A survey on 5G radio access network energy efficiency: massive MIMO, lean carrier design, sleep modes, and machine learning. IEEE Communications Surveys & Tutorials., 24(1), 653–697.

    Article  Google Scholar 

  18. Zhang, S., Cai, X., Zhou, W., & Wang, Y. (2019). Green 5G enabling technologies: An overview. IET Communications., 13(2), 135–143.

    Article  Google Scholar 

  19. Zhang, T., Zhao, J., An, L., & Liu, D. (2016). Energy efficiency of base station deployment in ultra dense HetNets: A stochastic geometry analysis. IEEE Wireless Communications Letters, 5(2), 184–187.

    Article  Google Scholar 

  20. Lei, J., Chen, H., & Zhao, F. (2018). Stochastic geometry analysis of downlink spectral and energy efficiency in ultradense heterogeneous cellular networks. Mobile Information Systems, 1, 2018.

    Google Scholar 

  21. Liu, C., Natarajan, B., & **a, H. (2015). Small cell base station sleep strategies for energy efficiency. IEEE Transactions on Vehicular Technology., 65(3), 1652–1661.

    Article  Google Scholar 

  22. Soh YS, Quek TQ, Kountouris M. Dynamic sleep mode strategies in energy efficient cellular networks. In: 2013 IEEE International Conference on Communications (ICC) 2013 Jun 9 (pp. 3131–3136). IEEE.

  23. Soh, Y. S., Quek, T. Q., Kountouris, M., & Shin, H. (2013). Energy efficient heterogeneous cellular networks. IEEE Journal on selected areas in communications., 31(5), 840–850.

    Article  Google Scholar 

  24. Samarakoon S, Bennis M, Saad W, Latva-Aho M. Dynamic clustering and sleep mode strategies for small cell networks. In: 2014 11th International Symposium on Wireless Communications Systems (ISWCS) 2014 Aug 26 (pp. 934–938). IEEE.

  25. Samarakoon, S., Bennis, M., Saad, W., & Latva-Aho, M. (2015). Dynamic clustering and on/off strategies for wireless small cell networks. IEEE Transactions on Wireless Communications., 15(3), 2164–2178.

    Article  Google Scholar 

  26. Samarakoon S, Bennis M, Saad W, Latva-Aho M. Opportunistic sleep mode strategies in wireless small cell networks. In: 2014 IEEE International Conference on Communications (ICC) 2014 Jun 10 (pp. 2707–2712). IEEE.

  27. Tang, J., Shojaeifard, A., So, D. K., Wong, K. K., & Zhao, N. (2018). Energy efficiency optimization for CoMP-SWIPT heterogeneous networks. IEEE Transactions on Communications., 66(12), 6368–6383.

    Article  Google Scholar 

  28. Tran GK, Shimodaira H, Rezagah RE, Sakaguchi K, Araki K. Practical evaluation of on-demand small cell ON/OFF based on traffic model for 5G cellular networks. In: 2016 IEEE Wireless Communications and Networking Conference 2016 Apr 3 (pp. 1–7). IEEE.

  29. Mao, Y., Luo, Y., Zhang, J., & Letaief, K. B. (2015). Energy harvesting small cell networks: Feasibility, deployment, and operation. IEEE Communications Magazine, 53(6), 94–101.

    Article  Google Scholar 

  30. Perera, T. D., Jayakody, D. N., Sharma, S. K., Chatzinotas, S., & Li, J. (2017). Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges. IEEE Communications Surveys & Tutorials, 20(1), 264–302.

    Article  Google Scholar 

  31. Zheng, Z., Zhang, X., Cai, L. X., Zhang, R., & Shen, X. (2014). Sustainable communication and networking in two-tier green cellular networks. IEEE Wireless Communications, 21(4), 47–53.

    Article  Google Scholar 

  32. Lv T, Gao H, Shi Z, Su X. Energy efficiency of two-tier heterogeneous networks with energy harvesting. In: 2017 IEEE International Conference on Communications (ICC) 2017 May 21 (pp. 1–6). IEEE.

  33. Guntupalli, L., Gidlund, M., & Li, F. Y. (2018). An on-demand energy requesting scheme for wireless energy harvesting powered IoT networks. IEEE Internet of Things Journal, 5(4), 2868–2879.

    Article  Google Scholar 

  34. Landstrom S, Murai H, Simonsson A. Deployment aspects of LTE pico nodes. In: 2011 IEEE International Conference on Communications Workshops (ICC) 2011 Jun 5 (pp. 1–5). IEEE.

  35. Baddeley A, Bárány I, Schneider R. Spatial point processes and their applications. Stochastic Geometry: Lectures Given at the CIME Summer School Held in Martina Franca, Italy, September 13–18, 2004 2007: 1–75.

  36. DoT . Monthly Telecommunication Report February 2022. tech. rep., Department of Telecommunication, Govt. of India; 2022.

  37. KMC . Population Density of Kolkata as on March 2022. tech. rep., Kolkata Municipal Corporation; 2022.

  38. 3GPP . Study on channel model for frequencies from 0.5 to 100 GHz (Release 16). tech. rep., 3GPP TR 38.901; 2018.

  39. Afshang, M., Saha, C., & Dhillon, H. S. (2017). Nearest-neighbor and contact distance distributions for Matérn cluster process. IEEE Communications Letters., 21(12), 2686–2689.

    Article  Google Scholar 

  40. Mukherjee S. Analytical modeling of heterogeneous cellular networks. Cambridge University Press; 2014 Jan 23.

  41. Liu Y, Li W, Li Y. Network traffic classification using k-means clustering. In: Second international multi-symposiums on computer and computational sciences (IMSCCS 2007) 2007 Aug 13 (pp. 360–365). IEEE.

  42. Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm. Journal of the royal statistical society. Series c (applied statistics), 28(1), 100–108.

    Google Scholar 

  43. Selim, S. Z., & Ismail, M. A. (1984). K-means-type algorithms: A generalized convergence theorem and characterization of local optimality. IEEE Transactions on pattern analysis and machine intelligence, 1, 81–87. https://doi.org/10.1109/TPAMI.1984.4767478

    Article  Google Scholar 

  44. Bottou, L., & Bengio, Y. (1994). Convergence properties of the k-means algorithms. Advances in neural information processing systems, 7.

  45. Demir ÖT, Björnson E, Sanguinetti L. 2021 Foundations of user-centric cell-free massive MIMO. In: Foundations and Trends® in Signal Processing. 14(3–4):162–472.

  46. PiovesanN, G. A. F., Miozzo, M., Rossi, M., & Dini, P. (2018). Energy sustainable paradigms and methods for future mobile networks: A survey. Computer Communications, 119, 101–117.

    Article  Google Scholar 

  47. Leon-Garcia A. Probability and random processes for electrical engineering. Chapter 12. Pearson Education India; 1994.

  48. Ghosh, A., & Misra, I. S. (2017). A joint CAC and dynamic bandwidth allocation technique for capacity and QoS analysis in heterogeneous LTE based BWA network: few case studies. Wireless Personal Communications, 97(2), 2833–2857. https://doi.org/10.1007/s11277-017-4637-x

    Article  Google Scholar 

  49. Galiotto, C., Pratas, N. K., Doyle, L., & Marchetti, N. (2017). Effect of LOS/NLOS propagation on 5G ultra-dense networks. Computer Networks, 19(120), 126–140.

    Article  Google Scholar 

Download references

Acknowledgements

The authors bestow their sincere gratitude to the Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata for the pursuance of this research work.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Arijeet Ghosh has performed the background study, designed and analyzed the proposed methodology, and written the manuscript. Iti Saha Misra has guided and finalized it.

Corresponding author

Correspondence to Arijeet Ghosh.

Ethics declarations

Conflict of interest

Not applicable.

Ethical approval

I have taken prior approval from my supervisor and research committee of the Department of Electronics and Telecommunication Engineering at Jadavpur University before submitting this research paper to Telecommunications Systems, Springer.

Consent for publication

I sought my co-author's consent before communicating this manuscript to Telecommunications Systems, Springer. I declare that the manuscript is the authors’ original work and is not communicated for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A., Saha Misra, I. Enabling sustainable green communication in three-tier 5G ultra dense HetNet with sleep cycle modulated energy harvesting. Wireless Netw (2024). https://doi.org/10.1007/s11276-024-03765-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11276-024-03765-7

Keywords

Navigation