Log in

Spatial refinement based method for small-sized target detection

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

To detect small-sized targets in long-distance images, we propose a spatial refinement-based method by fusing features of small-sized targets. Specifically, we add a spatial refinement module (SRM) into the structure of FPN to detect small-sized targets. The redundancy, blur, and inaccuracy that appear in fusion improve the accuracy of the detection model. The simulation results show that the combination of SRM and FPN outperforms the other benchmark detection methods on small-sized targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yu, D., & Ji, S. (2022). A new spatial-oriented object detection framework for remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 60(4407416), 1–16. https://doi.org/10.1109/TGRS.2021.3127232

    Article  Google Scholar 

  2. Lin, D., Hu, S., Wu, W., & Wu, G. (2023). Few-shot RF fingerprinting recognition for secure satellite remote sensing and image processing,’ Science China Information Sciences, http://engine.scichina.com/doi/10.1007/s11432-022-3672-7.

  3. Ding, Y., Feng, Y., Lu, W., Zheng, S., Zhao, N., Meng, L., Nallanathan, A., & Yang, X. (2022). Online edge learning offloading and resource management for uav-assisted mec secure communications. IEEE Journal of Selected Topics in Signal Processing. https://doi.org/10.1109/JSTSP.2022.3222910

    Article  Google Scholar 

  4. Lu, W., Mo, Y., Feng, Y., Gao, Y., Zhao, N., Wu, Y., & Nallanathan, A. (2022). Secure transmission for multi -UAV-assisted mobile edge computing based on reinforcement learning. IEEE Transactions on Network Science and Engineering. https://doi.org/10.1109/TNSE.2022.31851302022

    Article  Google Scholar 

  5. Xu, Y., et al. (2021). Coordinated direct and relay transmission with noma and network coding in Nakagami-m fading channels. IEEE Transactions on Communications, 69(1), 207–222. https://doi.org/10.1109/TCOMM.2020.3025555

    Article  Google Scholar 

  6. Li, X., Fan, R., Hu, H., & Zhang, N. (2022). Joint task offloading and resource allocation for cooperative mobile-edge computing under sequential task dependency. IEEE Internet Things Journal, 9(23), 24009–24029.

    Article  Google Scholar 

  7. Liu, M., Liu, C., Yan, Z., Chen, Y., & Zhao, N. (2022). Radio frequency fingerprint collaborative intelligent blind identification for green radios. IEEE Transactions on Green Communications and Networking. https://doi.org/10.1109/TGCN.2022.3185045

    Article  Google Scholar 

  8. Liu, M., Zhang, H., Liu, Z., & Zhao, N. (2022). Attacking spectrum sensing with adversarial deep learning in cognitive radio-enabled Internet of Things. IEEE Transactions on Reliability. https://doi.org/10.1109/TR.2022.3179491

    Article  Google Scholar 

  9. Krizhevsky A, Sutskever I, & Hinton G E. (2012). Imagenet classification with deep convolutional neural networks, In: Advances in Neural Information Processing Systems, 25.

  10. Wang, J., Zhong, Y., Zheng, Z., Ma, A., & Zhang, L. (2021). RSNet: The search for remote sensing deep neural networks in recognition tasks. IEEE Transactions on Geoscience and Remote Sensing, 59(3), 2520–2534. https://doi.org/10.1109/TGRS.2020.3001401

    Article  Google Scholar 

  11. Girshick, R., Donahue, J., & Darrell, T., et al. (2014).“Rich feature hierarchies for accurate object detection and semantic segmentation,” In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 580–587.

  12. **, B., Zhou, F., Zhang, X., Wu, Q., & Al-Dhahir, N. (2021). Radar target detection via GAMP: A sparse recovery strategy off the grid. IEEE Transactions on Vehicular Technology, 70(5), 4153–4165. https://doi.org/10.1109/TVT.2021.3072227

    Article  Google Scholar 

  13. Redmon, J., Divvala, S., & Girshick, R., et al. (2016).“You only look once: Unified, real-time object detection,” In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 779–788.

  14. Li, X., Yang, Y., Sun, Z., Cui, G., & Yeo, T. S. (2021). Multi-frame integration method for radar detection of weak moving target. IEEE Transactions on Vehicular Technology, 70(4), 3609–3624. https://doi.org/10.1109/TVT.2021.3066516

    Article  Google Scholar 

  15. Wu, W., Hu, S., Lin, D., & Wu, G. (2022). Reliable resource allocation with RF fingerprinting authentication in secure IoT networks. Science China Information Sciences, 65, 170304.

    Article  MathSciNet  Google Scholar 

  16. Li, J., Li, Y. F., He, L., et al. (2020). Spatio-temporal fusion for remote sensing data: an overview and new benchmark. Science China Information Sciences, 63(4), 140301. https://doi.org/10.1007/s11432-019-2785-y

    Article  MathSciNet  Google Scholar 

  17. Li, N., **a, S. D., Tao, X. F., et al. (2020). An area based physical layer authentication framework to detect spoofing attacks. Science China Information Sciences, 63(10), 202302. https://doi.org/10.1007/s11432-019-2802-x

    Article  MathSciNet  Google Scholar 

  18. **a, G.S. et al. (2018)“DOTA: A large-scale dataset for object detection in aerial images,” In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3974-3983, https://doi.org/10.1109/CVPR.2018.00418.

  19. Wu, Y., Fan, Z., Fang, Y., & Liu, C. (2021). An effective correction method for afm image distortion due to hysteresis and thermal drift. IEEE Transactions on Instrumentation and Measurement, 70(5004212), 1–12. https://doi.org/10.1109/TIM.2020.3038007

    Article  Google Scholar 

  20. Shen, S., Zhang, K., Zhou, Y., et al. (2020). Security in edge-assisted Internet of Things: challenges and solutions. Science China Information Sciences, 63(12), 220302.

    Article  MathSciNet  Google Scholar 

  21. Li, S., Zhai, D., Du, P., et al. (2019). Energy-efficient task offloading, load balancing, and resource allocation in mobile edge computing enabled IoT networks. Science China Information Sciences, 62, 29307.

    Article  Google Scholar 

  22. You, X., Wang, C. X., Huang, J., et al. (2021). Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. Science China Information Sciences, 64, 110301.

    Article  Google Scholar 

  23. Kakkavas, G., Tsitseklis, K., Karyotis, V., & Papavassiliou, S. (2020). A software defined radio cross-layer resource allocation approach for cognitive radio networks: From theory to practice. IEEE Transactions on Cognitive Commununication and Networking, 6(2), 740–755.

    Article  Google Scholar 

  24. Cui, J., Wei, L., Zhang, J., Xu, Y., & Zhong, H. (2019). An efficient message-authentication scheme based on edge computing for vehicular Ad Hoc networks. IEEE Transaction on Intelligent Transportation Systems, 20(5), 1621–1632.

    Article  Google Scholar 

  25. Tian, X., Wu, X., Li, H., & Wang, X. (2020). RF fingerprints prediction for cellular network positioning: a subspace identification approach. IEEE Transactions on Mobile Computing, 19(2), 450–465. https://doi.org/10.1109/TMC.2019.2893278

    Article  Google Scholar 

  26. Kim, J., Kim, S., Kim, S. T., & Ro, Y. M. (2022). Robust perturbation for visual explanation: Cross-checking mask optimization to avoid class distortion. IEEE Transactions on Image Processing, 31, 301–313. https://doi.org/10.1109/TIP.2021.3130526

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, W., Guo, Y., Lin, D. et al. Spatial refinement based method for small-sized target detection. Wireless Netw (2023). https://doi.org/10.1007/s11276-023-03403-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11276-023-03403-8

Keywords

Navigation