Log in

Performance analysis of intra-frame cooperative spectrum sensing in cognitive UAV networks

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Cognitive radio (CR) is a revolutionary paradigm to migrate the spectrum scarcity problem in wireless networks. In view of the spectrum scarcity of unmanned aerial vehicles (UAVs) communication system, cooperative spectrum sensing (CSS) has emerged as a key function of CR to identify the available spectrum for UAV sensing nodes. However, the flexible locations of flying UAVs make CSS a difficult task, which in turn makes it difficult for CSS performance to meet UAV requirements. In this paper, we design an intra-frame cooperation way to achieve CSS for cognitive UAV networks (CUAVNs), which provides the same CSS performance as the traditional inter-frame cooperation and higher throughput for UAVs. Furthermore, considering certain performance requirements in CUAVNs, we propose sequential probability ratio test (SPRT)-based CSS method, and further make an in-depth analysis of relationship among performance indices of CSS and approximate the actual detection performance and the stop** time by ignoring the excess over the boundaries and the random walk. Finally, numerical results corroborate the effectiveness and correctness of our theoretical analysis, while comparison results also represent the superiority of our proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Arjoune, Y., & Kaabouch, N. (2019). A comprehensive survey on spectrum sensing in cognitive radio networks: Recent advances, new challenges, and future research directions. Sensors, 19(1), 126. https://doi.org/10.3390/s19010126

    Article  Google Scholar 

  2. Saleem, Y., Rehmani, M. H., & Zeadally, S. (2015). Integration of cognitive radio technology with unmanned aerial vehicles: Issues, opportunities, and future research challenges. Journal of Network & Computer Applications, 50, 15–31. https://doi.org/10.1016/j.jnca.2014.12.002

    Article  Google Scholar 

  3. Jacob, P., Sirigina, R. P., Madhukumar, A. S., & Prasad, V. A. (2016). Cognitive radio for aeronautical communications: A survey. IEEE Access, 4, 3417–3443. https://doi.org/10.1109/ACCESS.2016.2570802

    Article  Google Scholar 

  4. Boulogeorgos, A. A., Chatzidiamantis, N. D., & Karagiannidis, G. K. (2016). Spectrum sensing with multiple primary users over fading channels. IEEE Communications Letters, 20(7), 1457–1460. https://doi.org/10.1109/LCOMM.2016.2554545

    Article  Google Scholar 

  5. Chandrasekaran, G., & Kalyani, S. (2015). Performance analysis of cooperative spectrum sensing over kμ shadowed fading. IEEE Wireless Communications Letters, 4(5), 553–556. https://doi.org/10.1109/LWC.2015.2457895

    Article  Google Scholar 

  6. Liu, X., Guan, M., Zhang, X., & Ding, H. (2018). Spectrum sensing optimization in an UAV-based cognitive radio. IEEE Access, 6, 44002–44009. https://doi.org/10.1109/ACCESS.2018.2862424

    Article  Google Scholar 

  7. Almasoud, A. M., & Kamal, A. E. (2019). Data dissemination in IoT using a cognitive UAV. IEEE Transactions on Cognitive Communications and Networking, 5(4), 849–862. https://doi.org/10.1109/TCCN.2019.2922263

    Article  Google Scholar 

  8. Liu, X., & Zhang, X. (2020). NOMA-based resource allocation for cluster-based cognitive industrial Internet of Things. IEEE Transactions on Industrial Informatics, 16(8), 5379–5388. https://doi.org/10.1109/TII.2019.2947435

    Article  Google Scholar 

  9. Liu, X., Zhai, X. B., Lu, W., & Wu, C. (2021). QoS-guarantee resource allocation for multibeam satellite industrial Internet of Things with NOMA. IEEE Transactions on Industrial Informatics, 17(3), 2052–2061. https://doi.org/10.1109/TII.2019.2951728

    Article  Google Scholar 

  10. Liu, X., & Zhang, X. (2019). Rate and energy efficiency improvements for 5G-based IoT with simultaneous transfer. IEEE Internet of Things Journal, 6(4), 5971–5980. https://doi.org/10.1109/JIOT.2018.2863267

    Article  Google Scholar 

  11. Wu, Q., Ding, G., Wang, J., & Yao, Y. (2013). Spatial-temporal opportunity detection for spectrum-heterogeneous cognitive radio networks: Two-dimensional sensing. IEEE Transactions on Wireless Communications, 12(2), 516–526. https://doi.org/10.1109/TWC.2012.122212.111638

    Article  Google Scholar 

  12. Shen, F., Ding, G., Wang, Z., & Wu, Q. (2019). UAV-based 3D spectrum sensing in spectrum-heterogeneous networks. IEEE Transactions on Vehicular Technology, 68(6), 5711–5722. https://doi.org/10.1109/TVT.2019.2909167

    Article  Google Scholar 

  13. Mei, W., & Zhang, R. (2020). UAV-sensing-assisted cellular interference coordination: A cognitive radio approach. IEEE Wireless Communications Letters, 9(6), 799–803. https://doi.org/10.1109/LWC.2020.2970416

    Article  Google Scholar 

  14. Hao, B. Y., Zhou, H., & Sun, B. (2012). Cooperative spectrum sensing algorithm for two-UAV. Journal of Ordnance Equipment Engineering, 33(2), 114–116.

    Google Scholar 

  15. Zhang, H., Da, X., Hu, H. (2019). Multi-UAV cooperative spectrum sensing in cognitive UAV network. Proceedings of the 5th International Conference on Communication and Information Processing, (pp. 273–278). https://doi.org/10.1145/3369985.3370014.

  16. Zhan, C., & Zeng, Y. (2020). Aerial-ground cost tradeoff for multi-UAV-enabled data collection in wireless sensor networks. IEEE Transactions on Communications, 68(3), 1937–1950. https://doi.org/10.1109/TCOMM.2019.2962479

    Article  Google Scholar 

  17. Wu, J., Wang, C., Yu, Y., Song, T., & Hu, J. (2020). Performance optimisation of cooperative spectrum sensing in mobile cognitive radio networks. IET Communications, 14(6), 1028–1036. https://doi.org/10.1049/iet-com.2019.1083

    Article  Google Scholar 

  18. Wu, J., Chen, Y., Li, P., Zhang, J., Wang, C., Tang, J., **a, L., Lu, C., & Song, T. (2021). Optimisation of virtual cooperative spectrum sensing for UAV-based interweave cognitive radio system. IET Communications, 15(10), 1368–1379.

    Article  Google Scholar 

  19. Liang, X., Xu, W., Gao, H., Pan, M., Lin, J., Deng, Q., & Zhang, P. (2020). Throughput optimization for cognitive UAV networks: A three-dimensional-location-aware approach. IEEE Wireless Communications Letters, 9(7), 948–952. https://doi.org/10.1109/LWC.2020.2974946

    Article  Google Scholar 

  20. Lai, L., Fan, Y., Poor, H. V. (2008). Quickest detection in cognitive radio: A sequential change detection framework. IEEE Global Telecommunications Conference (GLOBECOM) (pp. 1–5). New Orleans.

  21. Hanafi, E., Martin, P. A., Smith, P. J., & Coulson, A. J. (2016). On the distribution of detection delay for quickest spectrum sensing. IEEE Transactions on Communications, 64(2), 502–510. https://doi.org/10.1109/TCOMM.2015.2508807

    Article  Google Scholar 

  22. Badawy, A., Shafie, A. E., & Khattab, T. (2020). On the performance of quickest detection spectrum sensing: The case of cumulative sum. IEEE Communications Letters, 24(4), 739–743. https://doi.org/10.1109/LCOMM.2020.2970014

    Article  Google Scholar 

  23. Wu, J., Wang, C., Yu, Y., Song, T., & Hu, J. (2020). Sequential fusion to defend against sensing data falsification attack for cognitive Internet of Things. ETRI Journal, 42(6), 976–986. https://doi.org/10.4218/etrij.2019-0388

    Article  Google Scholar 

  24. Wu, J., Yu, Y., Song, T., & Hu, J. (2019). Sequential 0/1 for cooperative spectrum sensing in the presence of strategic Byzantine attack. IEEE Wireless Communications Letters, 8(2), 500–503. https://doi.org/10.1109/LWC.2018.2877665

    Article  Google Scholar 

  25. Wu, J., Yu, Y., Zhu, H., Song, T., & Hu, J. (2020). Cost-Benefit tradeoff of Byzantine attack in cooperative spectrum sensing. IEEE Systems Journal, 14(2), 2532–2543. https://doi.org/10.1109/JSYST.2019.2952395

    Article  Google Scholar 

  26. Mozaffari, M., Saad, W., Bennis, M., Debbah, M. (2015). Drone small cells in the clouds: Design, deployment and performance analysis. IEEE Global Communications Conference (GLOBECOM) (pp. 1–6). San Diego.

  27. Hourani, A., Sithamparanathan, K., & Lardner, S. (2014). Optimal LAP altitude for maximum coverage. IEEE Wireless Communication Letters, 3(6), 569–572. https://doi.org/10.1109/LWC.2014.2342736

    Article  Google Scholar 

  28. Varshney, P. K. (1997). Distributed Detection and Data Fusion. Springer.

    Book  Google Scholar 

  29. Wu, J., Song, T., Yu, Y., Wang, C., & Hu, J. (2018). Sequential cooperative spectrum sensing in the presence of dynamic Byzantine attack for mobile networks. PLoS ONE, 13(7), e0199546. https://doi.org/10.1371/journal.pone.0199546

    Article  Google Scholar 

  30. Wu, J., Song, T., Yu, Y., Wang, C., & Hu, J. (2019). Reuse of Byzantine data in cooperative spectrum sensing using sequential detection. IET Communications, 14(2), 251–261. https://doi.org/10.1049/iet-com.2019.0696

    Article  Google Scholar 

  31. Poor, H. V., & Hadjiliadis, O. (2008). Quickest Detection. Cambridge University Press.

    Book  Google Scholar 

  32. Liang, Y., Zeng, Y., Peh, E. C. Y., & Hoang, A. T. (2008). Sensing-throughput tradeoff for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(4), 1326–1337. https://doi.org/10.1109/TWC.2008.060869

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of Zhejiang Province (No. LQ22F010013), Open Research Fund of National Mobile Communications Research Laboratory, Southeast University (No. 2022D16), Open Fund Project of Sichuan Provincial Key Laboratory of Artificial Intelligence (No. 2021RYJ07), Fundamental Research Funds for the Provincial Universities of Zhejiang (No. GK209907299001-023), and 2020 Annual Teachers' Professional Development Project of Domestical Visiting Scholars in Institutions of Higher Education (No. FX2020009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Ge, H. Performance analysis of intra-frame cooperative spectrum sensing in cognitive UAV networks. Wireless Netw 28, 1689–1701 (2022). https://doi.org/10.1007/s11276-022-02931-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-02931-z

Keywords

Navigation