Log in

An overview on the two-component systems of Streptomyces coelicolor

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The two-component system (TCS) found in various organisms is a regulatory system, which is involved in the response by the organism to stimuli, thereby regulating the internal behavior of the cell. It is commonly found in prokaryotes and is an important signaling system in bacteria. TCSs are involved in the regulation of physiological and morphological differentiation of the industrially important microbes from the genus Streptomyces, which produce a vast array of bioactive secondary metabolites (SMs). Genetic engineering of TCSs can substantially increase the yield of target SMs, which is valuable for industrial-scale production. Research on TCS has mainly been completed in the model strain Streptomyces coelicolor. In this review, we summarize the recent advances in the functional identification and elucidation of the regulatory mechanisms of various TCSs in S. coelicolor, with a focus on their roles in the biosynthesis of important SMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aceti DJ, Champness WC (1998) Transcriptional regulation of Streptomyces coelicolor pathway-specific antibiotic regulators by the absA and absB loci. J Bacteriol 180:3100–3106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ainsa JA, Parry HD, Chater KF (1999) A response regulator-like protein that functions at an intermediate stage of sporulation in Streptomyces coelicolor A3(2). Mol Microbiol 34:607–619

    Article  CAS  PubMed  Google Scholar 

  • Allenby NEE, Laing E, Bucca G, Kierzek AM, Smith CP (2012) Diverse control of metabolism and other cellular processes in Streptomyces coelicolor by the PhoP transcription factor: genome-wide identification of in vivo targets. Nucleic Acids Res 40:9543–9556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amin R, Reuther J, Bera A, Wohlleben W, Mast Y (2012) A novel GlnR target gene, nnaR, is involved in nitrate/nitrite assimilation in Streptomyces coelicolor. Microbiology 158:1172–1182

    Article  CAS  PubMed  Google Scholar 

  • Amin R, Franz-Wachtel M, Tiffert Y, Heberer M, Meky M, Ahmed Y, Matthews A, Krysenko S, Jakobi M, Hinder M, Moore J, Okoniewski N, Macek B, Wohlleben W, Bera A (2016) Post-translational serine/threonine phosphorylation and lysine acetylation: a novel regulatory aspect of the global nitrogen response regulator GlnR in S. coelicolor M145. Front Mol Biosci 3:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson T, Brian P, Riggle P, Kong R, Champness W (1999) Genetic suppression analysis of non-antibiotic-producing mutants of the Streptomyces coelicolor absA locus. Microbiol (Reading 145:2343–2353

    Article  CAS  Google Scholar 

  • Anderson TB, Brian P, Champness WC (2001) Genetic and transcriptional analysis of absA, an antibiotic gene cluster-linked two-component system that regulates multiple antibiotics in Streptomyces coelicolor. Mol Microbiol 39:553–566

    Article  CAS  PubMed  Google Scholar 

  • Antoraz S, Rico S, Rodriguez H, Sevillano L, Alzate JF, Santamaria RI, Diaz M (2017) The orphan response regulator Aor1 is a new relevant piece in the complex puzzle of Streptomyces coelicolor antibiotic regulatory network. Front Microbiol 8:2444

    Article  PubMed  PubMed Central  Google Scholar 

  • Apel AK, Sola-Landa A, Rodriguez-Garcia A, Martin JF (2007) Phosphate control of phoA, phoC and phoD gene expression in Streptomyces coelicolor reveals significant differences in binding of PhoP to their promoter regions. Microbiology 153:3527–3537

  • Arroyo-Perez EE, Gonzalez-Ceron G, Soberon-Chavez G, Georgellis D, Servin-Gonzalez L (2019) A novel two-component system, encoded by the sco5282/sco5283 genes, affects Streptomyces coelicolor morphology in liquid culture. Front Microbiol 10:1568

    Article  PubMed  PubMed Central  Google Scholar 

  • Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Meier-Kolthoff JP, Klenk HP, Clement C, Ouhdouch Y, van Wezel GP (2016) Taxonomy, physiology, and Natural Products of Actinobacteria. Microbiol Mol Biol Rev 80:1–43

    Article  PubMed  Google Scholar 

  • Barreiro C, Martinez-Castro M (2019) Regulation of the phosphate metabolism in Streptomyces genus: impact on the secondary metabolites. Appl Microbiol Biotechnol 103:1643–1658

    Article  CAS  PubMed  Google Scholar 

  • Bednarz B, Kotowska M, Pawlik KJ (2019) Multi-level regulation of coelimycin synthesis in Streptomyces coelicolor A3(2). Appl Microbiol Biotechnol 103:6423–6434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  PubMed  Google Scholar 

  • Bishop A, Fielding S, Dyson P, Herron P (2004) Systematic insertional mutagenesis of a streptomycete genome: a link between osmoadaptation and antibiotic production. Genome Res 14:893–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brian P, Riggle PJ, Santos RA, Champness WC (1996) Global negative regulation of Streptomyces coelicolor antibiotic synthesis mediated by an absa-encoded putative signal transduction system. J Bacteriol 178:3221–3231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bush MJ, Tschowri N, Schlimpert S, Flardh K, Buttner MJ (2015) c-di-GMP signalling and the regulation of developmental transitions in streptomycetes. Nat Rev Microbiol 13:749–760

    Article  CAS  PubMed  Google Scholar 

  • Butler MS (2008) Natural products to drugs: natural product-derived compounds in clinical trials. Nat Prod Rep 25:475–516

    Article  CAS  PubMed  Google Scholar 

  • Chang HM, Chen MY, Shieh YT, Bibb MJ, Chen CW (1996) The cutRS signal transduction system of Streptomyces lividans represses the biosynthesis of the polyketide antibiotic actinorhodin. Mol Microbiol 21:1075–1085

    CAS  PubMed  Google Scholar 

  • Chen SS, Zheng GS, Zhu H, He HQ, Chen L, Zhang WW, Jiang WH, Lu YH (2016) Roles of two-component system AfsQ1/Q2 in regulating biosynthesis of the yellow-pigmented coelimycin P2 in Streptomyces coelicolor. Fed Eur Microbiol Soc Microbiol Lett 363:fnw160

    Article  Google Scholar 

  • Chen YL, Yang YP, Li GQ, Mao XF, Jia WD, Shi AP, Lu YH (2021) Investigation into the upstream signal transduction pathway of AfsQ1/Q2, a two-component regulatory system involved in regulation of antibiotic synthesis in Streptomyces coelicolor. Prog Biochem Biophys 48:450–464

    Google Scholar 

  • de la Nieta RS, Antoraz S, Alzate JF, Santamaria RI, Diaz M (2020) Antibiotic production and antibiotic resistance: the two sides of AbrB1/B2, a two-component system of Streptomyces coelicolor. Front Microbiol 11:587750

    Article  Google Scholar 

  • Dutta R, Qin L, Inouye M (1999) Histidine kinases: diversity of domain organization. Mol Microbiol 34:633–640

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Martinez LT, Santos-Beneit F, Martin JF (2012) Is PhoR-PhoP partner fidelity strict? PhoR is required for the activation of the pho regulon in Streptomyces coelicolor. Mol Genet Genomics 287:565–573

    Article  CAS  PubMed  Google Scholar 

  • Fink D, Weissschuh N, Reuther J, Wohlleben W, Engels A (2002) Two transcriptional regulators GlnR and GlnRII are involved in regulation of nitrogen metabolism in Streptomyces coelicolor A3(2). Mol Microbiol 46:331–347

    Article  CAS  PubMed  Google Scholar 

  • Fischer M, Falke D, Ronitz J, Haase A, Damelang T, Pawlik T, Sawers RG (2019) Hypoxia-induced synthesis of respiratory nitrate reductase 2 of Streptomyces coelicolor A3(2) depends on the histidine kinase OsdK in mycelium but not in spores. Microbiology 165:905–916

    Article  CAS  PubMed  Google Scholar 

  • Gongerowska-Jac M, Szafran MJ, Mikolajczyk J, Szymczak J, Bartynska M, Gierlikowska A, Bialy S, Elliot MA, Jakimowicz D (2021) Global chromosome topology and the two-component systems in concerted manner regulate transcription in Streptomyces. Msystems 6:e0114221

    Article  PubMed  Google Scholar 

  • Guthrie EP, Flaxman CS, White J, Hodgson DA, Bibb MJ, Chater KF (1998) A response-regulator-like activator of antibiotic synthesis from Streptomyces coelicolor A3(2) with an amino-terminal domain that lacks a phosphorylation pocket. Microbiol (Reading) 144:727–738

    Article  CAS  Google Scholar 

  • He JM, Zhu H, Zheng GS, Liu PP, Wang J, Zhao GP, Zhu GQ, Jiang WH, Lu YH (2016) Direct involvement of the master nitrogen metabolism regulator GlnR in antibiotic biosynthesis in Streptomyces. J Biol Chem 291:26443–26454

    Article  CAS  PubMed  Google Scholar 

  • Homerova D, Knirschova R, Kormanec J (2002) Response regulator ChiR regulates expression of chitinase gene, chiC, in Streptomyces coelicolor. Folia Microbiol 47:499–505

    Article  CAS  Google Scholar 

  • Hong HJ, Paget MSB, Buttner MJ (2002) A signal transduction system in Streptomyces coelicolor that activates the expression of a putative cell wall glycan operon in response to vancomycin and other cell wall-specific antibiotics. Mol Microbiol 44:1199–1211

    Article  CAS  PubMed  Google Scholar 

  • Hong HJ, Hutchings MI, Neu JM, Wright GD, Paget MSB, Buttner MJ (2004) Characterization of an inducible vancomycin resistance system in Streptomyces coelicolor reveals a novel gene (vanK) required for drug resistance. Mol Microbiol 52:1107–1121

    Article  CAS  PubMed  Google Scholar 

  • Hong HJ, Hutchings MI, Hill LM, Buttner MJ (2005) The role of the novel fem protein VanK in vancomycin resistance in Streptomyces coelicolor. J Biol Chem 280:13055–13061

    Article  CAS  PubMed  Google Scholar 

  • Hong HJ, Hutchings MI, Buttner MJ (2008) Vancomycin resistance VanS/VanR two-component systems. Adv Exp Med Biol 631:200–213

    Article  CAS  PubMed  Google Scholar 

  • Hong HJ (2016) Construction of a bioassay system to identify extracellular agents targeting bacterial cell envelope. Methods Mol Biol 1440:125–137

    Article  CAS  PubMed  Google Scholar 

  • Honma S, Ito S, Yajima S, Sasaki Y (2021) Nitric oxide signaling for actinorhodin production in Streptomyces coelicolor A3(2) via the DevS/R two-component system. Appl Environ Microbiol 87:e0048021

    Article  PubMed  Google Scholar 

  • Howell A, Dubrac S, Noone D, Varughese KI, Devine K (2006) Interactions between the YycFG and PhoPR two-component systems in Bacillus subtilis: the PhoR kinase phosphorylates the non-cognate YycF response regulator upon phosphate limitation. Mol Microbiol 59:1199–1215

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Lih CJ, Pan KH, Cohen SN (2001) Global analysis of growth phase responsive gene expression and regulation of antibiotic biosynthetic pathways in Streptomyces coelicolor using DNA microarrays. Genes Dev 15:3183–3192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchings MI, Hoskisson PA, Chandra G, Buttner MJ (2004) Sensing and responding to diverse extracellular signals? Analysis of the sensor kinases and response regulators of Streptomyces coelicolor A3(2). Microbiol (Reading) 150:2795–2806

    Article  CAS  Google Scholar 

  • Hutchings MI, Hong HJ, Buttner MJ (2006a) The vancomycin resistance VanRS two-component signal transduction system of Streptomyces coelicolor. Mol Microbiol 59:923–935

    Article  CAS  PubMed  Google Scholar 

  • Hutchings MI, Hong HJ, Leibovitz E, Sutcliffe IC, Buttner MJ (2006b) The σE cell envelope stress response of Streptomyces coelicolor is influenced by a novel lipoprotein, CseA. J Bacteriol 188:7222–7229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang I, Chen HC, Sheen J (2002) Two-component signal transduction pathways in Arabidopsis. Plant Physiol 129:500–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishizuka H, Horinouchi S, Kieser HM, Hopwood DA, Beppu T (1992) A putative two-component regulatory system involved in secondary metabolism in Streptomyces spp. J Bacteriol 174:7585–7594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilian R, Frasch HJ, Kulik A, Wohlleben W, Stegmann E (2016) The VanRS homologous two-component system VnlRSAb of the glycopeptide producer Amycolatopsis balhimycina activates transcription of the vanHAXSc genes in Streptomyces coelicolor, but not in A. balhimycina. Microb Drug Resist 22:499–509

  • Kim D-J, Forst S (2001) Genomic analysis of the histidine kinase family in bacteria and archaea. Microbiol (Reading) 147:1197–1212

    Article  CAS  Google Scholar 

  • Kim YJ, Moon AN, Song JY, Kim ES, Kim CJ, Chang YK (2009) Gene-expression analysis of acidic pH shock effects on two-component systems in Streptomyces coelicolor. Biotechnol Bioprocess Eng 14:584–590

    Article  CAS  Google Scholar 

  • Kormanec J, Sevcikova B, Homerova D (2000) Cloning of a two-component regulatory system probably involved in the regulation of chitinase in Streptomyces coelicolor A3(2). Folia Microbiol 45:397–406

    Article  CAS  Google Scholar 

  • Koteva K, Hong HJ, Wang XD, Nazi I, Hughes D, Naldrett MJ, Buttner MJ, Wright GD (2010) A vancomycin photoprobe identifies the histidine kinase VanSsc as a vancomycin receptor. Nat Chem Biol 6:327–329

    Article  CAS  PubMed  Google Scholar 

  • Lejeune C, Abreu S, Chaminade P, Dulermo T, David M, Werten S, Virolle MJ (2021) Impact of phosphate availability on membrane lipid content of the model strains, Streptomyces lividans and Streptomyces coelicolor. Front Microbiol 12:623919

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis RA, Wahab A, Bucca G, Laing EE, Moller-Levet CS, Kierzek A, Smith CP (2019) Genome-wide analysis of the role of the antibiotic biosynthesis regulator AbsA2 in Streptomyces coelicolor A3(2). PLoS ONE 14:e0200673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YQ, Chen PL, Chen SF, Wu D, Zheng J (2004) A pair of two-component regulatory genes ecrA1/A2 in S. coelicolor. J Zhejiang Univ Sci 5:173–179

    Article  PubMed  Google Scholar 

  • Li L, Jiang WH, Lu YH (2017) A novel two-component system, GluR-GluK, involved in glutamate sensing and uptake in Streptomyces coelicolor. J Bacteriol 199:e0009717

    Article  Google Scholar 

  • Li L, Zhao YW, Ma JJ, Tao HN, Zheng GS, Chen J, Jiang WH, Lu YH (2020) The orphan histidine kinase PdtaS-p regulates both morphological differentiation and antibiotic biosynthesis together with the orphan response regulator PdtaR-p in Streptomyces. Microbiol Res 233:126411

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Zhang PP, Zhu YP, Lu T, Wang YM, Cao GX, Shi M, Chen XL, Tao MF, Pang XH (2019) Novel two-component system MacRS is a pleiotropic regulator that controls multiple morphogenic membrane protein genes in Streptomyces coelicolor. Appl Environ Microbiol 85:e0217818

    Article  Google Scholar 

  • Liu M, Xu WH, Zhu YP, Cui XQ, Pang XH (2021) The response regulator MacR and its potential in improvement of antibiotic production in Streptomyces coelicolor. Curr Microbiol 78:3696–3707

    Article  CAS  PubMed  Google Scholar 

  • Lockey C, Edwards RJ, Roper DI, Dixon AM (2020) The extracellular domain of two-component system sensor kinase VanS from Streptomyces coelicolor binds vancomycin at a newly identified binding site. Sci Rep 10:1–13

    Article  Google Scholar 

  • Lu YH, Wang WH, Shu D, Zhang WW, Chen L, Qin ZJ, Yang S, Jiang WH (2007) Characterization of a novel two-component regulatory system involved in the regulation of both actinorhodin and a type I polyketide in Streptomyces coelicolor. Appl Microbiol Biotechnol 77:625–635

    Article  CAS  PubMed  Google Scholar 

  • Lu YH, He JM, Zhu H, Yu ZY, Wang R, Chen YL, Dang FJ, Zhang WW, Yang S, Jiang WH (2011) An orphan histidine kinase, OhkA, regulates both secondary metabolism and morphological differentiation in Streptomyces coelicolor. J Bacteriol 193:3020–3032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maciunas LJ, Porter N, Lee PJ, Gupta K, Loll PJ (2021) Structures of full-length VanR from Streptomyces coelicolor in both the inactive and activated states. Acta Crystallogr D Struct Biol 77:1027–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin JF, Sola-Landa A, Santos-Beneit F, Fernandez-Martinez LT, Prieto C, Rodriguez-Garcia A (2011) Cross-talk of global nutritional regulators in the control of primary and secondary metabolism in Streptomyces. Microb Biotechnol 4:165–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin JF, Santos-Beneit F, Rodriguez-Garcia A, Sola-Landa A, Smith MCM, Ellingsen TE, Nieselt K, Burroughs NJ, Wellington EMH (2012) Transcriptomic studies of phosphate control of primary and secondary metabolism in Streptomyces coelicolor. Appl Microbiol Biotechnol 95:61–75

    Article  CAS  PubMed  Google Scholar 

  • Martin JF, Rodriguez-Garcia A, Liras P (2017) The master regulator PhoP coordinates phosphate and nitrogen metabolism, respiration, cell differentiation and antibiotic biosynthesis: comparison in Streptomyces coelicolor and Streptomyces avermitilis. J Antibiot 70:534–541

    Article  CAS  Google Scholar 

  • Martin-Martin S, Rodriguez-Garcia A, Santos-Beneit F, Franco-Dominguez E, Sola-Landa A, Martin JF (2018) Self-control of the PHO regulon: the PhoP-dependent protein PhoU controls negatively expression of genes of PHO regulon in Streptomyces coelicolor. J Antibiot 71:113–122

    Article  CAS  Google Scholar 

  • Martinez-Castro M, Barreiro C, Martin JF (2018) Analysis and validation of the pho regulon in the tacrolimus-producer strain Streptomyces tsukubaensis: differences with the model organism Streptomyces coelicolor. Appl Microbiol Biotechnol 102:7029–7045

    Article  CAS  PubMed  Google Scholar 

  • McKenzie NL, Nodwell JR (2007) Phosphorylated AbsA2 negatively regulates antibiotic production in Streptomyces coelicolor through interactions with pathway-specific regulatory gene promoters. J Bacteriol 189:5284–5292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLean TC, Lo R, Tschowri N, Hoskisson PA, Al Bassam MM, Hutchings MI, Som NF (2019) Sensing and responding to diverse extracellular signals: an updated analysis of the sensor kinases and response regulators of Streptomyces species. Microbiology 165:929–952

    Article  CAS  PubMed  Google Scholar 

  • Millan-Oropeza A, Henry C, Lejeune C, David M, Virolle MJ (2020) Expression of genes of the pho regulon is altered in Streptomyces coelicolor. Sci Rep 10:1–21

    Article  Google Scholar 

  • Moeker N, Brocker M, Schaffer S, Kraemer R, Morbach S, Bott M (2004) Deletion of the genes encoding the MtrA-MtrB two-component system of Corynebacterium glutamicum has a strong influence on cell morphology, antibiotics susceptibility and expression of genes involved in osmoprotection. Mol Microbiol 54:420–438

    Article  CAS  Google Scholar 

  • Molle V, Buttner MJ (2000) Different alleles of the response regulator gene bldM arrest Streptomyces coelicolor development at distinct stages. Mol Microbiol 36:1265–1278

    Article  CAS  PubMed  Google Scholar 

  • Nguyen KT, Willey JM, Nguyen LD, Nguyen LT, Viollier PH, Thompson CJ (2002) A central regulator of morphological differentiation in the multicellular bacterium Streptomyces coelicolor. Mol Microbiol 46:1223–1238

    Article  CAS  PubMed  Google Scholar 

  • Novotna GB, Kwun MJ, Hong HJ (2016) In vivo characterization of the activation and interaction of the VanR-VanS two-component regulatory system controlling glycopeptide antibiotic resistance in two related Streptomyces species. Antimicrob Agents Chemother 60:1627–1637

  • O’Connor TJ, Kanellis P, Nodwell JR (2002) The ramC gene is required for morphogenesis in Streptomyces coelicolor and expressed in a cell type-specific manner under the direct control of RamR. Mol Microbiol 45:45–57

    Article  PubMed  Google Scholar 

  • O’Connor TJ, Nodwell JR (2005) Pivotal roles for the receiver domain in the mechanism of action of the response regulator RamR of Streptomyces coelicolor. J Mol Biol 351:1030–1047

    Article  PubMed  Google Scholar 

  • Paget MS, Leibovitz E, Buttner MJ (1999) A putative two-component signal transduction system regulates σE, a sigma factor required for normal cell wall integrity in Streptomyces coelicolor A3(2). Mol Microbiol 33:97–107

    Article  CAS  PubMed  Google Scholar 

  • Parkinson JS, Kofoid EC (1992) Communication modules in bacterial signaling proteins. Annu Rev Genet 26:71–112

    Article  CAS  PubMed  Google Scholar 

  • Pullan ST, Chandra G, Bibb MJ, Merrick M (2011) Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes. BMC Genomics 12:1–14

    Article  Google Scholar 

  • Rico S, Santamaria RI, Yepes A, Rodriguez H, Laing E, Bucca G, Smith CP, Diaz M (2014a) Deciphering the regulon of Streptomyces coelicolor AbrC3, a positive response regulator of antibiotic production. Appl Environ Microbiol 80:2417–2428

    Article  PubMed  PubMed Central  Google Scholar 

  • Rico S, Yepes A, Rodriguez H, Santamaria J, Antoraz S, Krause EM, Diaz M, Santamaria RI (2014b) Regulation of the AbrA1/A2 two-component system in Streptomyces coelicolor and the potential of its deletion strain as a heterologous host for antibiotic production. PLoS ONE 9:e109844

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez H, Rico S, Diaz M, Santamaria RI (2013) Two-component systems in Streptomyces: key regulators of antibiotic complex pathways. Microb Cell Fact 12:1–10

    Article  Google Scholar 

  • Rodriguez H, Rico S, Yepes A, Franco-Echevarria E, Antoraz S, Santamaria RI, Diaz M (2015) The two kinases, AbrC1 and AbrC2, of the atypical two-component system AbrC are needed to regulate antibiotic production and differentiation in Streptomyces coelicolor. Front Microbiol 6:450

    PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Garcia A, Barreiro C, Santos-Beneit F, Sola-Landa A, Martin JF (2007) Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a ∆phoP mutant. Proteomics 7:2410–2429

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Garcia A, Sola-Landa A, Apel K, Santos-Beneit F, Martin JF (2009) Phosphate control over nitrogen metabolism in Streptomyces coelicolor: direct and indirect negative control of glnR, glnA, glnII and amtB expression by the response regulator PhoP. Nucleic Acids Res 37:3230–3242

  • Rozas D, Gullon S, Mellado RP (2012) A novel two-component system involved in the transition to secondary metabolism in Streptomyces coelicolor. PLoS ONE 7:e31760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryding NJ, Anderson TB, Champness WC (2002) Regulation of the Streptomyces coelicolor calcium-dependent antibiotic by absA, encoding a cluster-linked two-component system. J Bacteriol 184:794–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • San Paolo S, Huang J, Cohen SN, Thompson CJ (2006) rag genes: novel components of the RamR regulon that trigger morphological differentiation in Streptomyces coelicolor. Mol Microbiol 61:1167–1186

  • Santos-Beneit F, Rodriguez-Garcia A, Apel AK, Martin JF (2009a) Phosphate and carbon source regulation of two PhoP-dependent glycerophosphodiester phosphodiesterase genes of Streptomyces coelicolor. Microbiology 155:1800–1811

    Article  CAS  PubMed  Google Scholar 

  • Santos-Beneit F, Rodriguez-Garcia A, Sola-Landa A, Martin JF (2009b) Cross-talk between two global regulators in Streptomyces: PhoP and AfsR interact in the control of afsS, pstS and phoRP transcription. Mol Microbiol 72:53–68

    Article  CAS  PubMed  Google Scholar 

  • Santos-Beneit F, Barriuso-Iglesias M, Fernandez-Martinez LT, Martinez-Castro M, Sola-Landa A, Rodriguez-Garcia A, Martin JF (2011) The RNA rolymerase omega factor RpoZ is regulated by PhoP and has an important role in antibiotic biosynthesis and morphological differentiation in Streptomyces coelicolor. Appl Environ Microbiol 77:7586–7594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos-Beneit F, Rodriguez-Garcia A, Martin JF (2012) Overlap** binding of PhoP and AfsR to the promoter region of glnR in Streptomyces coelicolor. Microbiol Res 167:532–535

    Article  CAS  PubMed  Google Scholar 

  • Santos-Beneit F, Rodriguez-Garcia A, Martin JF (2013) Identification of different promoters in the absA1-absA2 two-component system, a negative regulator of antibiotic production in Streptomyces coelicolor. Mol Genet Genomics 288:39–48

    Article  CAS  PubMed  Google Scholar 

  • Shao ZH, Deng WX, Li SY, He JM, Ren SX, Huang WR, Lu YH, Zhao GP, Cai ZM, Wang J (2015) GlnR-mediated regulation of ectABCD transcription expands the role of the GlnR regulon to osmotic stress management. J Bacteriol 197:3041–3047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheeler NL, MacMillan SV, Nodwell JR (2005) Biochemical activities of the absA two-component system of Streptomyces coelicolor. J Bacteriol 187:687–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu D, Chen L, Wang WH, Yu ZY, Ren C, Zhang WW, Yang S, Lu YH, Jiang WH (2009) afsQ1-Q2-sigQ is a pleiotropic but conditionally required signal transduction system for both secondary metabolism and morphological development in Streptomyces coelicolor. Appl Microbiol Biotechnol 81:1149–1160

    Article  CAS  PubMed  Google Scholar 

  • Sola-Landa A, Rodriguez-Garcia A, Franco-Dominguez E, Martin JF (2005) Binding of PhoP to promoters of phosphate-regulated genes in Streptomyces coelicolor: identification of PHO boxes. Mol Microbiol 56:1373–1385

    Article  CAS  PubMed  Google Scholar 

  • Sola-Landa A, Rodriguez-Garci A, Apel AK, Martin JF (2008) Target genes and structure of the direct repeats in the DNA-binding sequences of the response regulator PhoP in Streptomyces coelicolor. Nucleic Acids Res 36:1358–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sola-Landa A, Rodriguez-Garcia A, Amin R, Wohlleben W, Martin JF (2013) Competition between the GlnR and PhoP regulators for the glnA and amtB promoters in Streptomyces coelicolor. Nucleic Acids Res 41:1767–1782

    Article  CAS  PubMed  Google Scholar 

  • Som NF, Heine D, Holmes N, Knowles F, Chandra G, Seipke RF, Hoskisson PA, Wilkinson B, Hutchings MI (2017) The MtrAB two-component system controls antibiotic production in Streptomyces coelicolor. Microbiol 163 A3(2):1415–1419

    Article  Google Scholar 

  • Thomason P, Kay R (2000) Eukaryotic signal transduction via histidine-aspartate phosphorelay. J Cell Sci 113:3141–3150

    Article  CAS  PubMed  Google Scholar 

  • Tian YQ, Fowler K, Findlay K, Tan HR, Chater KF (2007) An unusual response regulator influences sporulation at early and late stages in Streptomyces coelicolor. J Bacteriol 189:2873–2885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiffert Y, Supra P, Wurm R, Wohlleben W, Wagner R, Reuther J (2008) The Streptomyces coelicolor GlnR regulon: identification of new GlnR targets and evidence for a central role of GlnR in nitrogen metabolism in actinomycetes. Mol Microbiol 67:861–880

    Article  CAS  PubMed  Google Scholar 

  • Tiffert Y, Franz-Wachtel M, Fladerer C, Nordheim A, Reuther J, Wohlleben W, Mast Y (2011) Proteomic analysis of the GlnR-mediated response to nitrogen limitation in Streptomyces coelicolor M145. Appl Microbiol Biotechnol 89:1149–1159

    Article  CAS  PubMed  Google Scholar 

  • Tseng HC, Chen CW (1991) A cloned ompR-like gene of Streptomyces lividans 66 suppresses defective melC1, a putative copper-transfer gene. Mol Microbiol 5:1187–1196

    Article  CAS  PubMed  Google Scholar 

  • Urem M, van Rossum T, Bucca G, Moolenaar GF, Laing E, Swiatek-Polatynska MA, Willemse J, Tenconi E, Rigali S, Goosen N, Smith CP, van Wezel GP (2016) OsdR of Streptomyces coelicolor and the dormancy regulator DevR of Mycobacterium tuberculosis control overlap** regulons. Msystems 1:e0001416

    Article  Google Scholar 

  • Wang CX, Ge HX, Dong HJ, Zhu CG, Li YQ, Zheng J, Cen PL (2007) A novel pair of two-component signal transduction system ecrE1/ecrE2 regulating antibiotic biosynthesis in Streptomyces coelicolor. Biologia 62:511–516

    Article  CAS  Google Scholar 

  • Wang J, Zhao GP (2009) GlnR positively regulates nasA transcription in Streptomyces coelicolor. Biochem Biophys Res Commun 386:77–81

    Article  CAS  PubMed  Google Scholar 

  • Wang WH, Shu D, Chen L, Jiang WH, Lu YH (2009) Cross-talk between an orphan response regulator and a noncognate histidine kinase in Streptomyces coelicolor. Fed Eur Microbiol Soc Microbiol Lett 294:150–156

    Article  CAS  Google Scholar 

  • Wang Y, Cen XF, Zhao GP, Wang J (2012) Characterization of a new GlnR binding box in the promoter of amtB in Streptomyces coelicolor inferred a PhoP/GlnR competitive binding mechanism for transcriptional regulation of amtB. J Bacteriol 194:5237–5244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Mast Y, Wang J, Zhang WW, Zhao GP, Wohlleben W, Lu YH, Jiang WH (2013) Identification of two-component system AfsQ1/Q2 regulon and its cross-regulation with GlnR in Streptomyces coelicolor. Mol Microbiol 87:30–48

    Article  CAS  PubMed  Google Scholar 

  • Wang GJ, Izawa M, Yang XG, Xu DB, Tanaka Y, Ochi K (2017) Identification of a novel lincomycin resistance mutation associated with activation of antibiotic production in Streptomyces coelicolor. Antimicrob Agents Chemother 61 A3(2):e0224716

    Article  Google Scholar 

  • Wei W, Wang WH, Cao ZW, Yu H, Wang XJ, Zhao J, Tan H, Xu H, Jiang WH, Li YX (2007) Comparative analysis of two-component signal transduction system in two streptomycete genomes. Acta Biochim Biophys Sin 39:317–325

    Article  PubMed  Google Scholar 

  • West AH, Stock AM (2001) Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci 26:369–376

    Article  CAS  PubMed  Google Scholar 

  • Yao LL, Liao CH, Huang G, Zhou Y, Rigali S, Zhang BC, Ye BC (2014) GlnR-mediated regulation of nitrogen metabolism in the actinomycete Saccharopolyspora erythraea. Appl Microbiol Biotechnol 98:7935–7948

    Article  CAS  PubMed  Google Scholar 

  • Yeo KJ, Han YH, Eo Y, Cheong HK (2013a) Expression, purification, crystallization and preliminary X-ray analysis of the extracellular sensory domain of DraK histidine kinase from Streptomyces coelicolor. Acta Crystallogr Sect F Struct Biol Cryst Commun 69:909–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeo KJ, Kim EH, Hwang E, Han YH, Eo Y, Kim HJ, Kwon O, Hong YS, Cheong C, Cheong HK (2013b) pH-dependent structural change of the extracellular sensor domain of the DraK histidine kinase from Streptomyces coelicolor. Biochem Biophys Res Commun 431:554–559

    Article  CAS  PubMed  Google Scholar 

  • Yepes A, Rico S, Rodriguez-Garcia A, Santamaria RI, Diaz M (2011) Novel two-component systems implied in antibiotic production in Streptomyces coelicolor. PLoS ONE 6:e19980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu ZY, Zhu H, Dang FJ, Zhang WW, Qin ZJ, Yang S, Tan HR, Lu YH, Jiang WH (2012) Differential regulation of antibiotic biosynthesis by DraR-K, a novel two-component system in Streptomyces coelicolor. Mol Microbiol 85:535–556

    Article  CAS  PubMed  Google Scholar 

  • Yu ZY, Zhu H, Zheng GS, Jiang WH, Lu YH (2014) A genome-wide transcriptomic analysis reveals diverse roles of the two-component system DraR-K in the physiological and morphological differentiation of Streptomyces coelicolor. Appl Microbiol Biotechnol 98:9351–9363

    Article  CAS  PubMed  Google Scholar 

  • Zhang PP, Wu LL, Zhu YP, Liu M, Wang YM, Cao GX, Chen XL, Tao MF, Pang XH (2017) Deletion of MtrA inhibits cellular development of Streptomyces coelicolor and alters expression of developmental regulatory genes. Front Microbiol 8:2013

  • Zheng GS, Liu PP, He WY, Tao HN, Yang Z, Sun CW, Wang WF, Lu YH, Jiang WH (2021) Identification of the cognate response regulator of the orphan histidine kinase OhkA involved in both secondary metabolism and morphological differentiation in Streptomyces coelicolor. Appl Microbiol Biotechnol 105:5905–5914

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Zhang P, Zhang J, Xu W, Wang X, Wu L, Sheng D, Ma W, Cao G, Chen X-L, Lu Y, Zhang Y-Z, Pang X (2019) The developmental regulator MtrA binds GlnR boxes and represses nitrogen metabolism genes in Streptomyces coelicolor. Mol Microbiol 112:29–46

    Article  CAS  PubMed  Google Scholar 

  • Zhu YP, Zhang PP, Zhang J, Wang J, Lu YH, Pang XH (2020) Impact on multiple antibiotic pathways reveals MtrA as a master regulator of antibiotic production in Streptomyces spp. and potentially in other Actinobacteria. Appl Environ Microbiol 86:e0120120

    Article  Google Scholar 

  • Zhu YP, Zhang PP, Lu T, Wang XY, Li AY, Lu YH, Tao MF, Pang XH (2021) Impact of MtrA on phosphate metabolism genes and the response to altered phosphate conditions in Streptomyces. Environ Microbiol 23:6907–6923

    Article  CAS  PubMed  Google Scholar 

  • Zhu YP, Wang XY, Zhang J, Ni X, Zhang X, Tao MF, Pang XH (2022) The regulatory gene wblA is a target of the orphan response regulator OrrA in Streptomyces coelicolor. Environ Microbiol 24:3081–3096

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Doctoral Scientific Research Start-up Foundation from Henan University of Technology (No. 2019BS056), Key scientific research projects of universities in Henan Province (No. 23A180007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yinhua Lu or Yawei Zhao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**, S., Hui, M., Lu, Y. et al. An overview on the two-component systems of Streptomyces coelicolor. World J Microbiol Biotechnol 39, 78 (2023). https://doi.org/10.1007/s11274-023-03522-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-023-03522-6

Keywords

Navigation