Log in

Factors explaining the diversity of invertebrates inhabiting woods in the Paraná River wetlands

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Wetlands provide ecosystem services linked to the roles that macroinvertebrates play. These habitats have been highly deteriorated in the last decades. Predicting species assemblages and their response to a changing landscape requires a better understanding of the factors that drive variation in species abundance and distribution in natural conditions. Besides, woody debris support a diverse biota and have been promoted for river rehabilitation, restoration, and management. To assess whether invertebrates colonized the surface of submerged woods, 28 woody debris were collected in wetlands along the Paraná River floodplain. Taxonomic richness, diversity and evenness, and functional diversity of assemblages were explored. To quantify the relative role of environmental (i.e. limnological and wood parameters), spatial, and dispersal traits factors in explaining the composition and diversity of communities, redundancy, and variation partitioning analyses were run. All the substrates were colonized and macroinvertebrates were abundant and diverse. Functional alpha and beta redundancy were low due to a high turnover of species performing different functions, and a low dominance of species. The analysed factors explained around 50% of the variability in the biotic patterns analysed. In the Paraná River, woody debris is probed to be substrates useful for restoring diversity and functions and thus can support important ecosystem services wetlands provide. All the factors analysed partially supported the diversity, composition, and functions, but dispersal, spatial and limnological factors were the most important and strategies should consider them prior to wood characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  • Astorga A, Oksanen J, Soininen J, Virtanen R, Luoto M, Muotka T (2012) Distance decay of similarity in stream communities: do macro- and microorganism follow the same rules? Glob Ecol Biogeogr 21:365–375

    Article  Google Scholar 

  • Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143. https://doi.org/10.1111/j.1466-8238.2009.00490.x

    Article  Google Scholar 

  • Baselga A (2012) The relationship between species replacement, dissimilarity derived from nestedness and nestedness. Glob Ecol Biogeogr 21:1223–1232. https://doi.org/10.1111/j.1466-8238.2011.00756.x

    Article  Google Scholar 

  • Baselga A, Orme D, Villeger S, De Bortoli J, Leprieur F (2017) Partitioning Beta Diversity into Turnover and Nestedness Components. Version 1.4–1

  • Beisner BE, Peres-Neto PR, Lindström ES, Barnett A, Longhi ML (2006) The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87:2985–2991. https://doi.org/10.1890/0012-9658(2006)87[2985:TROEAS]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Benke AC, Wallace JB (2003) Influence of wood on invertebrate communities in streams and rivers In: Gregory SV, Boyer KL, Gurnell AM eds. The ecology and management of wood in world rivers. American Fisheries Society Symposium 37: Bethesda, Maryland. p. 149–177.

  • Benke AC, Huryn AD (2010) Benthic invertebrate production—facilitating answers to ecological riddles in freshwater ecosystems. J North Am Bentholo Soc 29:264–285. https://doi.org/10.1899/08-075.1

    Article  Google Scholar 

  • Bilton DT, Freeland JR, Okamura B (2001) Dispersal in freshwater invertebrates. Annu Rev Ecol Syst 32:159–181. https://doi.org/10.1146/annurev.ecolsys.32.081501.114016

    Article  Google Scholar 

  • Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Modell 153:51–68

    Article  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecol 73:1045–1055. https://doi.org/10.2307/1940179

    Article  Google Scholar 

  • Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004) Dissecting the spatial structure of ecological data at multiple scales. Ecol 85:1826–1832

    Article  Google Scholar 

  • Brill G, Anderson P, O’Farrell P (2017) Methodological and empirical considerations when assessing freshwater ecosystem service provision in a develo** city context: Making the best of what we have. Ecol Indic 76:256–274. https://doi.org/10.1016/j.ecolind.2017.01.006

    Article  Google Scholar 

  • Capeletti J, Marchese MR, Zilli FL (2021) Evaluating macroinvertebrate metrics for ecological assessment of large saline rivers (Argentina). Enviro Sci Pollut Res 46:66464–66476. https://doi.org/10.1007/s11356-021-16559-7

    Article  Google Scholar 

  • Collier KJ, Bury S, Gibbs M (2002) A stable isotope study of linkages between stream and terrestrial food webs through spider predation. Freshw Biol 47:1651–1665

    Article  Google Scholar 

  • Cottenie K (2005) Integrating environmental and spatial processes in ecological community dynamics. Ecol Lett 8:1175–1182

    Article  PubMed  Google Scholar 

  • Cummins KW, Merritt RW, Andrade PCN (2005) The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in south Brazil. Stud Neotrop Fauna Environ 40:69–89. https://doi.org/10.1080/01650520400025720

    Article  Google Scholar 

  • Dray S, Legendre P, Peres-Neto PR (2006) Spatial modeling: a comprehensive framework for principle coordinate analysis of neighbor matrices (PCNM). Ecol Modell 196:483–493

    Article  Google Scholar 

  • Ezcurra de Drago EC, Marchese MR, Montalto L (2007) Benthic Invertebrates. In: Iriondo M, Paggi JJ, Parma MJ (eds) The Middle Paraná River: Limnology of a Subtropical Wetland. Springer, Berlin, pp 83–122

    Chapter  Google Scholar 

  • Frissell CA, William JL, Warren CE, Hurley MD (1986) A Hierarchical Framework for Stream Habitat Classification: Viewing Streams in a Watershed Context. Environ Manage 10:199–214

    Article  Google Scholar 

  • Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S (2010) Diversity meets decomposition. Trends Ecol Evol 25:372–380. https://doi.org/10.1016/j.tree.2010.01.010

    Article  PubMed  Google Scholar 

  • Heino J, Alahuhta J, Ala-Hulkko T, Antikainen H, Bini LM, Bonada N, Datry T, Erős T, Hjort J, Kotavaara O, Melo AS, Soininen J (2017) Integrating dispersal proxies in ecological and environmental research in the freshwater realm. Environ Rev 25:334–349. https://doi.org/10.1139/er-2016-0110

    Article  Google Scholar 

  • Heino J, Soininen J (2006) Regional occupancy in unicellular eukaryotes: a reflection of niche breadth, habitat availability, or size-related dispersal capacity? Freshw Biol 51:672–685

    Article  Google Scholar 

  • Heino J, Melo AS, Bini LM (2015) Reconceptualising the beta diversity-environmental heterogeneity relationship in running water systems. Freshw Biol 60:223–235

    Article  Google Scholar 

  • Hoffmann A, Hering D (2000) Wood-associated macroinvertebrate fauna in central european streams. Int Rev Hydrobiol 85:25–48

    Article  Google Scholar 

  • Hufnagel L, Mics F, Homoródi R (2018) Introductory Chapter: Evaluation Methods of Ecosystem Services and Their Scientific and Societal Importance in Service of Solving the Global Problems of the Humankind. In: Hufnagel L (ed) Ecosystem Services and Global Ecology. IntechOpen, London

    Chapter  Google Scholar 

  • Jacobson B, Peres-Neto PR (2010) Quantifying and dis-entangling dispersal in metacommunities: how close havewe come? How far is there to go? Landsc Ecol 25:495–507

    Article  Google Scholar 

  • Kefford BJ (1998) The relationship between electrical conductivity and selected macroinvertebrate communities in four river systems of south-west Victoria. Australia Int J Salt Lake Res 7:153–170. https://doi.org/10.1023/A:1009019404720

    Article  Google Scholar 

  • Legendre P, Legendre L (2012) Disentangling the effects of dispersal mode on the assembly of macroinvertebrate assemblages in a heterogeneous highland region Numerical ecology Elsevier.

  • Legendre P, Borcard D, Blanchet G, Dray S (2012) MEM spatial eigenfunction and principal coordinate analyses. R package PCNM, version, 1–2.

  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613. https://doi.org/10.1111/j.1461-0248.2004.00608.x

    Article  Google Scholar 

  • Logue JB, Mouquet N, Peter H, Hillebrand H, Metacommunity Working Group (2011) Empirical approaches to metacommunities: a review and comparison with theory. Trends Ecol Evol 26:482–491

    Article  PubMed  Google Scholar 

  • Marchese M, Paggi AC (2004) Diversidad de Oligochaeta (Annelida) y Chironomidae (Diptera) del Litoral Fluvial Argentino. In ACEÑOLAZA FC (Ed) Temas de la Biodiversidad del Litoral fluvial argentino. Tucumán: Insugeo Miscelánea 2 p. 217–224

  • Marchese MR, Zilli FL (2021) Distribución de oligoquetos a diferentes escalas espaciotemporales del sistema Río Paraná-llanura aluvial. Libro de Resúmenes 9no Congreso Argentino de Limnología, La Plata, Argentina.

  • Marchetti ZY, Ramonell C, Brumich F, Alberdi R, Kandus P (2020) Vegetation and hydrogeomorphic features of a large lowland river: NDVI patterns summarizing fluvial dynamics and supporting interpretations of ecological patterns. Earth Surf Process Landf 45:694–706. https://doi.org/10.1002/esp.4766

    Article  Google Scholar 

  • McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecol 82:290–297

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and Human Well Being: Synthesis. Island Press, Washington

    Google Scholar 

  • Naeem S (1998) Species redundancy and ecosystem reliability. Conserv Biol 12:39–45. https://doi.org/10.1111/j.1523-1739.1998.96379.x

    Article  Google Scholar 

  • Neiff JJ (2005) Bosques Fluviales de la Cuenca del Paraná In: Arturi MF, Frangi JL, Goya JF, (Eds) Ecología y Manejo de los Bosques de Argentina, EDULP, La Plata pp. 1–26.

  • Nogaro G, Mermillod-Blondin F, Valett MH, François-Carcaillet F, Gaudet JP, Lafont M, Gibert J (2009) Ecosystem engineering at the sediment–water interface: bioturbation and consumer-substrate interaction. Oecologia 161:125–138. https://doi.org/10.1007/s00442-009-1365-2

    Article  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, Ohara RB et al (2013) Community ecology package. R package version 2:321–326

    Google Scholar 

  • Pavoine S, Ricotta C (2019) A simple translation from indices of species diversity to indices of phylogenetic diversity. Ecol Indic 101:552–561. https://doi.org/10.1016/j.ecolind.2019.01.052

    Article  Google Scholar 

  • Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecol 87:2614–2625. https://doi.org/10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2

    Article  Google Scholar 

  • Pillar VD, Blanco CC, Müller SC, Sosinski EE, Joner F, Duarte LD (2013) Functional redundancy and stability in plant communities. J Veg Sci 24:963–974. https://doi.org/10.1111/jvs.12047

    Article  Google Scholar 

  • Qian H, Ricklefs RE, White PS (2005) Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecol Lett 8:15–22. https://doi.org/10.1111/j.1461-0248.2004.00682.x

    Article  Google Scholar 

  • R version 4.0.3 (2020–10–10)"Bunny-Wunnies Freak Out" Copyright (C) 2020 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit)

  • R-Core Team (2016) R version 3.3.2 (2016–10–31)"Sincere Pumpkin Patch" Copyright (C) 2016 The R Foundation for Statistical Computing

  • Ricotta C, Laroche F, Szeidl L, Pavoine S (2020) From alpha to beta functional and phylogenetic redundancy. Methods Ecol Evol 11:487–493. https://doi.org/10.1111/2041-210X.13353

    Article  Google Scholar 

  • Robison G, Beschta RL (1990) Characteristics of coarse woody debris for several Coastal Streams of Southeast Alaska, USA. Can J Fish Aquat Sci 47:1684–1693. https://doi.org/10.1139/F90-193

    Article  Google Scholar 

  • Sarremejane R, Cid N, Stubbington R, Datry T, Alp M, Cañedo-Argüelles M, Cordero-Rivera A, Csabai Z, Guitiérrez-Cánovas C, Heino J, Forcellini M, Millán A, Paillex A, Paril P, Polasek M, Tierno de Figueroa JM, Usseglio-Polatera P, Zamora-Muñoz C, Bonada N (2020) Disperse a trait database to assess the dispersal potential of European aquatic macroinvertebrates. Sci Data 7:1–9

    Article  Google Scholar 

  • Scarabotti PA, Demonte LD, Pouilly M (2017) Climatic seasonality, hydrological variability, and geomorphology shape fish assemblage structure in a subtropical floodplain. Freshw Sci 36:653–668. https://doi.org/10.1086/693441

    Article  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press.

  • Soininen J, Weckstrom J (2009) Diatom community structure along environmental and spatial gradients in lakes and streams. Fundam Appl Limnol 174:205–213. https://doi.org/10.1127/1863-9135/2009/0174-0205

    Article  Google Scholar 

  • Spänhoff B, Alecke C, Meyer EI (2000) Colonization of submerged twigs and branches of different wood genera by aquatic macroinvertebrates Internat Rev. Hydrobiol 85:49–66. https://doi.org/10.1002/(SICI)1522-2632(200003)85:1%3c49::AID-IROH49%3e3.0.CO;2-%23

    Article  Google Scholar 

  • Steigerwalt NM (2005) Environmental factors affecting aquatic invertebrate community structure on snags in the Ichetucknee River, Florida. Doctoral dissertation, University of Florida.

  • Sweeney BW (1993) Effects of streamside vegetation on macroinvertebrate communities of White Clay Creek in eastern North America. Proc Acad Nat Sci Phila 144:291–340

    Google Scholar 

  • Tank JL, Winterbourn MJ (1995) Biofilm development and invertebrate colonization of wood in four New Zealand streams of contrasting pH. Freshw Biol 34:303–315

    Article  Google Scholar 

  • Tank JL, Rosi-Marshall EJ, Griffiths NA, Entrekin SA, Stephen ML (2010) A review of allochthonous organic matter dynamics and metabolism in streams. J North Am Benthol Soc 29:118–146. https://doi.org/10.1899/08-170.1

    Article  Google Scholar 

  • Thompson RM, Townsend CR (2006) A truce with neutral theory: local deterministic factors, species traits, and dispersal limitation together determine patterns of diversity in stream invertebrates. J Anim Ecol 75:476–484

    Article  PubMed  Google Scholar 

  • Valente-Neto F, Koroiva R, Roque FO, Fonseca-Gessner AA (2015) The effect of riparian deforestation on macroinvertebrates associated with submerged woody debris. Aquat Ecol 49:115–125. https://doi.org/10.1007/s10452-015-9510-y

    Article  CAS  Google Scholar 

  • Vilmi A, Karjalainen SM, Hellsten S, Heino J (2016) Bioassessment in a metacommunity context: are diatom communities structured solely by species sorting? Ecol Indic 62:86–94

    Article  CAS  Google Scholar 

  • Wantzen KM, Marchese MR, Marques M, Battirola L (2016) Invertebrates in Neotropical Floodplains. In: Batzer D, Boix D (eds) Invertebrates in Freshwater Wetlands: An International Perspective on their Ecology. Springer, New York, pp 493–524

    Chapter  Google Scholar 

  • Williams WD, Taaffe RG, Boulton AJ (1991) Longitudinal distribution of macroinvertebrates in two rivers subject to salinization. Hydrobiologia 210:151–160. https://doi.org/10.1007/BF00014329

    Article  Google Scholar 

  • Zarnetske PL, Baiser B, Streckers A, Record S, Belmaker J, Tuanmu MN (2017) The Interplay Between Landscape Structure and Biotic Interactions. Curr Landsc Ecol Rep 2:12–29. https://doi.org/10.1007/s40823-017-0021-5

    Article  Google Scholar 

  • Zilli F (2010) Bentos en ambientes leníticos con diferente grado de conectividad en la llanura aluvial del río Paraná Medio. Dissertation, Universidad Nacional de La Plata. https://doi.org/10.35537/10915/4303.

  • Zilli FL, Del Barco JL (2020) Bionomy and secondary production of midges inhabiting wood: Unravelling linkages at a large river system. Zool Soc 73:137–146. https://doi.org/10.1007/s12595-019-00310-9

    Article  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers whose suggestions helped improve and clarify this manuscript.

Funding

This study was funded by Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 318) and Agencia Nacional para la Promoción Científica y Técnica, Ministerio de Ciencia y Tecnología (ANPCyT, MinCyT) (PICT 2018-3744), Argentina.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design and collected the data. All analyses were performed by FZ. The first draft of the manuscript was written by FZ. FFF commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to F. L. Zilli.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zilli, F.L., Fernández, F. Factors explaining the diversity of invertebrates inhabiting woods in the Paraná River wetlands. Wetlands Ecol Manage 31, 595–609 (2023). https://doi.org/10.1007/s11273-023-09933-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-023-09933-4

Keywords

Navigation