Log in

Microbial Amelioration of Heavy Metal Toxicity in Plants for Agro-Environmental Sustainability

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Heavy metal pollution is one of the modern environmental problems that contaminate soil, water, and air. Heavy metal pollution not only results in significant crop yield losses, but also poses health risks. When subjected to heavy metal toxicity, which happens when the quantity of particular heavy metals in the soil or water exceeds their tolerance levels, plants can exhibit a variety of reactions. Metal accumulation in the tissues of plants causes oxidative stress. The oxidative stress in turn impacts cellular homeostasis and adversely affects growth and development. Plants exhibit different mechanisms to fight stressful conditions and lessen the negative consequences of heavy metal toxicity. In this regard, the first line of defence in response to heavy metal toxicity provided by the plant is restricting the uptake of the metals. The second line of defence includes various detoxification mechanisms. Microbes especially associated with the rhizospheric region of the crops have role in remediation of the soils from metal contaminants. The present review highlights the impact of heavy metal on plants and role of the microbes in lessening of heavy metal stress in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

NA.

References

  • Abdollahi, S., Golchin, A., & Shahryari, F. (2020). Lead and cadmium-resistant bacterial species isolated from heavy metal-contaminated soils show plant growth-promoting traits. International Microbiology, 23, 625–640.

    CAS  Google Scholar 

  • Abo-Amer, A. E., Abu-Gharbia, M. A., Soltan, E.-S.M., & Abd El-Raheem, W. M. (2014). Isolation and molecular characterization of heavy metal-resistant Azotobacter chroococcum from agricultural soil and their potential application in bioremediation. Geomicrobiology Journal, 31(7), 551–561.

    CAS  Google Scholar 

  • Abou-Aly, H. E., Youssef, A. M., Tewfike, T. A., El-Alkshar, E. A., & El-Meihy, R. M. (2021). Reduction of heavy metals bioaccumulation in sorghum and its rhizosphere by heavy metals-tolerant bacterial consortium. Biocatalysis and Agricultural Biotechnology, 31, 101911.

    CAS  Google Scholar 

  • Ahammed, G. J., & Yang, Y. (2022). Anthocyanin-mediated arsenic tolerance in plants. Environmental Pollution, 292, 118475.

    CAS  Google Scholar 

  • Alaoui-Sossé, B., Genet, P., Vinit-Dunand, F., Toussaint, M. L., Epron, D., & Badot, P. M. (2004). Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbohydrate accumulation and changes in ion contents. Plant Science, 166(5), 1213–1218.

    Google Scholar 

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—concepts and applications. Chemosphere, 91(7), 869–881.

    CAS  Google Scholar 

  • Angulo-Bejarano, P. I., Puente-Rivera, J., & Cruz-Ortega, R. (2021). Metal and metalloid toxicity in plants: An overview on molecular aspects. Plants, 10(4), 635.

    CAS  Google Scholar 

  • Anjum, S. A., Ashraf, U., Imran, K., Tanveer, M., Shahid, M., Shakoor, A., & Longchang, W. (2017). Phyto-toxicity of chromium in maize: Oxidative damage, osmolyte accumulation, anti-oxidative defense and chromium uptake. Pedosphere, 27(2), 262–273.

    CAS  Google Scholar 

  • Antoniadis, V., Levizou, E., Shaheen, S. M., Ok, Y. S., Sebastian, A., Baum, C., Prasad, M. N., Wenzel, W. W., & Rinklebe, J. (2017). Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–A review. Earth-Science Reviews, 171, 621–645.

    CAS  Google Scholar 

  • Ayangbenro, A. S., & Babalola, O. O. (2017). A new strategy for heavy metal polluted environments: A review of microbial biosorbents. International Journal of Environmental Research and Public Health, 14(1), 94.

    Google Scholar 

  • Banerjee, S., Datta, S., Chattyopadhyay, D., & Sarkar, P. (2011). Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation. Journal of Environmental Science and Health, Part A, 46(14), 1736–1747.

    CAS  Google Scholar 

  • Banerjee, G., Pandey, S., Ray, A. K., & Kumar, R. (2015). Bioremediation of heavy metals by a novel bacterial strain Enterobacter cloacae and its antioxidant enzyme activity, flocculant production, and protein expression in presence of lead, cadmium, and nickel. Water, Air, & Soil Pollution, 226, 1–9.

    CAS  Google Scholar 

  • Bhaduri, A. M., & Fulekar, M. (2012). Antioxidant enzyme responses of plants to heavy metal stress. Reviews in Environmental Science and Bio/technology, 11, 55–69.

    CAS  Google Scholar 

  • Brammer, H., & Ravenscroft, P. (2009). Arsenic in groundwater: A threat to sustainable agriculture in South and South-east Asia. Environment International, 35(3), 647–654.

    CAS  Google Scholar 

  • Bravo, G., Vega-Celedón, P., Gentina, J. C., & Seeger, M. (2020). Bioremediation by Cupriavidus metallidurans strain MSR33 of mercury-polluted agricultural soil in a rotary drum bioreactor and its effects on nitrogen cycle microorganisms. Microorganisms, 8(12), 1952.

    CAS  Google Scholar 

  • Bruins, M. R., Kapil, S., & Oehme, F. W. (2000). Microbial resistance to metals in the environment. Ecotoxicology and Environmental Safety, 45(3), 198–207.

    CAS  Google Scholar 

  • Burges, A., Alkorta, I., Epelde, L., & Garbisu, C. (2018). From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. International Journal of Phytoremediation, 20(4), 384–397.

    CAS  Google Scholar 

  • Catarecha, P., Segura, M. D., Franco-Zorrilla, J. M., García-Ponce, B., Lanza, M., Solano, R., Paz-Ares, J., & Leyva, A. (2007). A mutant of the Arabidopsis phosphate transporter PHT1; 1 displays enhanced arsenic accumulation. The Plant Cell, 19(3), 1123–1133.

    CAS  Google Scholar 

  • Cervantes, C., & Campos-García, J. (2007). Reduction and efflux of chromate by bacteria. In D. H. Nies & S. Silver (Eds.), Molecular microbiology of heavy metals (pp. 407–419). Springer.

  • Chakraborty, S., Das, S., Banerjee, S., Mukherjee, S., Ganguli, A., & Mondal, S. (2021). Heavy metals bio-removal potential of the isolated Klebsiella sp TIU20 strain which improves growth of economic crop plant (Vigna radiata L.) under heavy metals stress by exhibiting plant growth promoting and protecting traits. Biocatalysis and Agricultural Biotechnology, 38, 102204.

    CAS  Google Scholar 

  • Chen, J., & Yang, Z. M. (2012). Mercury toxicity, molecular response and tolerance in higher plants. BioMetals, 25(5), 847–857.

    CAS  Google Scholar 

  • Clemens, S. (2006). Evolution and function of phytochelatin synthases. Journal of Plant Physiology, 163(3), 319–332.

    CAS  Google Scholar 

  • Clemens, S. (2013). Mercury in plants. In R. H. Kretsinger, V. N. Uversky & E. A. Permyakov (Eds.), Encyclopedia of metalloproteins (pp. 1352–1356). Springer.

  • Dalvi, A. A., & Bhalerao, S. A. (2013). Response of plants towards heavy metal toxicity: An overview of avoidance, tolerance and uptake mechanism Ann. Plant Science, 2(9), 362–368.

    Google Scholar 

  • Dell’Amico, E., Cavalca, L., & Andreoni, V. (2008). Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biology and Biochemistry, 40(1), 74–84.

    Google Scholar 

  • Devi, R., Kaur, T., Kour, D., Hricovec, M., Mohan, R., Yadav, N., Rai, P. K., Rai, A. K., Yadav, A., & Kumar, M. (2022). Microbes-mediated alleviation of heavy metal stress in crops: Current research and future challenges. Journal of Applied Biology and Biotechnology, 10(2), 25–37.

    CAS  Google Scholar 

  • Dharni, S., Srivastava, A. K., Samad, A., & Patra, D. D. (2014). Impact of plant growth promoting Pseudomonas monteilii PsF84 and Pseudomonas plecoglossicida PsF610 on metal uptake and production of secondary metabolite (monoterpenes) by rose-scented geranium (Pelargonium graveolenscv. bourbon) grown on tannery sludge amended soil. Chemosphere, 117, 433–439.

    CAS  Google Scholar 

  • Durrieu, C., & Tran-Minh, C. (2002). Optical algal biosensor using alkaline phosphatase for determination of heavy metals. Ecotoxicology and Environmental Safety, 51(3), 206–209.

    CAS  Google Scholar 

  • El-Ballat, E. M., Elsilk, S. E., Ali, H. M., Ali, H. E., Hano, C., & El-Esawi, M. A. (2023). Metal-resistant PGPR strain Azospirillum brasilense EMCC1454 enhances growth and chromium stress tolerance of chickpea (Cicer arietinum L.) by modulating redox potential, osmolytes, antioxidants, and stress-related gene expression. Plants, 12(11), 2110.

    CAS  Google Scholar 

  • Emamverdian, A., Ding, Y., Mokhberdoran, F., **e, Y. (2015). Heavy metal stress and some mechanisms of plant defense response. The Scientific World Journal, 2015, 756120

  • Etesami, H. (2018). Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects. Ecotoxicology and Environmental Safety, 147, 175–191.

    CAS  Google Scholar 

  • Farid, M., Shakoor, M.B., Ehsan, S., Ali, S., Zubair, M., Hanif, M. (2013). Morphological, physiological and biochemical responses of different plant species to Cd stress. International Journal of Chemical and Biochemical Sciences, 3, 53–60.

  • Feng, Z., Ji, S., **, J., & Cui, D. (2021). Recent advances in metabolomics for studying heavy metal stress in plants. TrAC Trends in Analytical Chemistry, 143, 116402.

    CAS  Google Scholar 

  • Finnegan, P. M., & Chen, W. (2012). Arsenic toxicity: The effects on plant metabolism. Frontiers in Physiology, 3, 182.

    CAS  Google Scholar 

  • Fuentes, A., Almonacid, L., Ocampo, J. A., & Arriagada, C. (2016). Synergistic interactions between a saprophytic fungal consortium and Rhizophagus irregularis alleviate oxidative stress in plants grown in heavy metal contaminated soil. Plant and Soil, 407(1), 355–366.

    CAS  Google Scholar 

  • Gadd, J. (2008). Transformation and mobilization of metals, metalloids, and radionuclides by microorganisms. In A. Violante, P. M. Huang, G. M. Gadd (Eds.), Biophysico-chemical processes of metals and metalloids in soil environments. Wiley-Jupac Series (pp. 53–96). John Wiley & Sons.

  • Galvez, E. N. (1990). Survey of Total Arsenic Concentrations in Edible Seaweeds from Selected Oahu Sites. University of Hawai’i at Manoa.

    Google Scholar 

  • Ghori, N.-H., Ghori, T., Hayat, M., Imadi, S., Gul, A., Altay, V., & Ozturk, M. (2019). Heavy metal stress and responses in plants. International Journal of Environmental Science and Technology, 16, 1807–1828.

    CAS  Google Scholar 

  • Gontia-Mishra, I., Sapre, S., Sharma, A., & Tiwari, S. (2016). Alleviation of mercury toxicity in wheat by the interaction of mercury-tolerant plant growth-promoting rhizobacteria. Journal of Plant Growth Regulation, 35, 1000–1012.

    CAS  Google Scholar 

  • Gupta, A., Meyer, J. M., & Goel, R. (2002). Development of heavy metal-resistant mutants of phosphate solubilizing Pseudomonas sp. NBRI 4014 and their characterization. Current Microbiology, 45, 323–327.

    CAS  Google Scholar 

  • Hall. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53(366), 1–11.

    CAS  Google Scholar 

  • Hansen, A. J., DeFries, R. S., Turner, W. (2004). Land use change and biodiversity: a synthesis of rates and consequences during the period of satellite imagery. In G. Gutman, A. C. Janetos, C. O. Justice, E. F. Moran, J. F. Mustard, R. R. Rindfuss, D. Skole, B. L. Turner, M. A. Cochrane (Eds.), Land change science: Observing, monitoring and understanding trajectories of change on the Earth’s surface (pp. 277–299). Springer.

  • Harada, E., Kim, J.-A., Meyer, A. J., Hell, R., Clemens, S., & Choi, Y.-E. (2010). Expression profiling of tobacco leaf trichomes identifies genes for biotic and abiotic stresses. Plant and Cell Physiology, 51(10), 1627–1637.

    CAS  Google Scholar 

  • Harmsen, J. (2007). Measuring bioavailability: From a scientific approach to standard methods. Journal of Environmental Quality, 36(5), 1420–1428.

    CAS  Google Scholar 

  • Harmsen, J. (2008). Soil quality-requirements and guidance for the selection and application of methods for the assessment of bioavailability of contaminants in soil and soil materials. Werkgroep ISO/DIS17402, Soil quality

  • Hasanuzzaman, M., Nahar, K., Fujita, M. (2015). Arsenic toxicity in plants and possible remediation. In K. R. Hakeem, M. Sabir, M. Öztürk, A. R. Mermut (Eds.), Soil remediation and plants (pp. 433–501). Academic Press.

  • Hassan, T. U., Bano, A., & Naz, I. (2017). Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field. International Journal of Phytoremediation, 19(6), 522–529.

    Google Scholar 

  • Hauser, M. T. (2014). Molecular basis of natural variation and environmental control of trichome patterning. Frontiers in Plant Science, 5, 320.

    Google Scholar 

  • Herzig, R., Nehnevajova, E., Pfistner, C., Schwitzguebel, J. P., Ricci, A., & Keller, C. (2014). Feasibility of labile Zn phytoextraction using enhanced tobacco and sunflower: Results of five-and one-year field-scale experiments in Switzerland. International Journal of Phytoremediation, 16(7–8), 735–754.

    CAS  Google Scholar 

  • Hossain, M.A., Piyatida, P., da Silva, J.A.T., Fujita, M. (2012). Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. Journal of Botany, 2012. https://doi.org/10.1155/2012/872875.

  • Hughes, M. F., Beck, B. D., Chen, Y., Lewis, A. S., & Thomas, D. J. (2011). Arsenic exposure and toxicology: A historical perspective. Toxicological Sciences, 123(2), 305–332.

    CAS  Google Scholar 

  • Husna Hussain, A., Shah, M., Hamayun, M., Iqbal, A., Murad, W., Irshad, M., Qadir, M., & Kim, H. Y. (2021). Pseudocitrobacter anthropi reduces heavy metal uptake and improves phytohormones and antioxidant system in Glycine max L. World Journal of Microbiology and Biotechnology, 37(11), 195.

    Google Scholar 

  • Islam, F., Yasmeen, T., Ali, Q., Mubin, M., Ali, S., Arif, M. S., Hussain, S., Riaz, M., & Abbas, F. (2016). Copper-resistant bacteria reduces oxidative stress and uptake of copper in lentil plants: Potential for bacterial bioremediation. Environmental Science and Pollution Research, 23(1), 220–233.

    CAS  Google Scholar 

  • Israr, M., Sahi, S., Datta, R., & Sarkar, D. (2006). Bioaccumulation and physiological effects of mercury in Sesbania drummondii. Chemosphere, 65(4), 591–598.

    CAS  Google Scholar 

  • Iyer, A., Mody, K., & Jha, B. (2004). Accumulation of hexavalent chromium by an exopolysaccharide producing marine Enterobacter cloaceae. Marine Pollution Bulletin, 49(11–12), 974–977.

    CAS  Google Scholar 

  • Jiang, C. Y., Sheng, X. F., Qian, M., & Wang, Q. Y. (2008). Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere, 72(2), 157–164.

    CAS  Google Scholar 

  • Jomova, K., Makova, M., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., Rhodes, C. J., & Valko, M. (2022). Essential metals in health and disease. Chemico-Biological Interactions, 367, 110173.

    CAS  Google Scholar 

  • Kalaivanan, D., Ganeshamurthy, A. N. (2016). Mechanisms of heavy metal toxicity in plants. In N. Rao, K. Shivashankara, R. Laxman (Eds.), Abiotic stress physiology of horticultural crops (pp. 85–102). Springer.

  • Kang, S.-M., Asaf, S., Khan, A. L., Lubna, A., Mun, B. G., Khan, M. A., Gul, H., & Lee, I. J. (2020). Complete genome sequence of Pseudomonas psychrotolerans CS51, a plant growth-promoting bacterium, under heavy metal stress conditions. Microorganisms, 8(3), 382.

    CAS  Google Scholar 

  • Karenlampi, S., Schat, H., Vangronsveld, J., Verkleij, J. A. C., Van der Lelie, D., Mergeay, M., & Tervahauta, A. I. (2000). Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environmental Pollution, 107(2), 225–231.

    CAS  Google Scholar 

  • Kaur, H., & Garg, N. (2021). Zinc toxicity in plants: A review. Planta, 253(6), 129.

    CAS  Google Scholar 

  • Kayser, A., Wenger, K., Keller, A., Attinger, W., Felix, H., Gupta, S., & Schulin, R. (2000). Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: The use of NTA and sulfur amendments. Environmental Science & Technology, 34(9), 1778–1783.

    CAS  Google Scholar 

  • Khalid, S., Shahid, M., Niazi, N. K., Murtaza, B., Bibi, I., & Dumat, C. (2017). A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 182, 247–268.

    CAS  Google Scholar 

  • Khan, I., Ahmad, A., & Iqbal, M. (2009). Modulation of antioxidant defence system for arsenic detoxification in Indian mustard. Ecotoxicology and Environmental Safety, 72(2), 626–634.

    CAS  Google Scholar 

  • Kim, S., Cheong, Y., Seo, D., Hur, J., Heo, J., & Cho, J. (2007). Characterisation of heavy metal tolerance and biosorption capacity of bacterium strain CPB4 (Bacillus spp.). Water Science and Technology, 55(1–2), 105–111.

    CAS  Google Scholar 

  • Kısa, D. (2019). Responses of phytochelatin and proline-related genes expression associated with heavy metal stress in Solanum lycopersicum. Acta Botanica Croatica, 78(1), 9–16.

    Google Scholar 

  • Knotek-Smith, H. M., Deobald, L. A., Ederer, M., & Crawford, D. L. (2003). Cadmium stress studies: Media development, enrichment, consortia analysis, and environmental relevance. BioMetals, 16, 251–261.

    CAS  Google Scholar 

  • Kohli, S. K., Handa, N., Gautam, V., Bali, S., Sharma, A., Khanna, K., Arora, S., Thukral, A. K., Ohri, P., Karpets, Y. V., Kolupaev, Y. E., Bhardwaj, R. (2017). ROS signaling in plants under heavy metal stress. In M. Khan, N. Khan (Eds.), Reactive oxygen species and antioxidant systems in plants: Role and regulation under abiotic stress (pp. 185–214). Springer.

  • Kotala, S., Kawuri, R., & Gunam, I. B. W. (2014). The presence of mercury resistant bacteria in sediment of gold processing plant at Waekerta village of Buru district, Maluku province and their activity in reducing mercury. Current World Environment, 9(2), 271.

    Google Scholar 

  • Lakshmipathy, T. D., Prasad, A. A., & Kannabiran, K. (2010). Production of biosurfactant and heavy metal resistance activity of Streptomyces sp. VITDDK3-a novel halo tolerant actinomycetes isolated from saltpan soil. Biolological Research, 4(2), 108–115.

    CAS  Google Scholar 

  • LeDuc, D. L., AbdelSamie, M., Móntes-Bayon, M., Wu, C. P., Reisinger, S. J., & Terry, N. (2006). Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard. Environmental Pollution, 144(1), 70–76.

    CAS  Google Scholar 

  • Li, N., Kang, Y., Pan, W., Zeng, L., Zhang, Q., & Luo, J. (2015). Concentration and transportation of heavy metals in vegetables and risk assessment of human exposure to bioaccessible heavy metals in soil near a waste-incinerator site, South China. Science of the Total Environment, 521, 144–151.

    Google Scholar 

  • Li, R., Wu, H., Ding, J., Fu, W., Gan, L., & Li, Y. (2017). Mercury pollution in vegetables, grains and soils from areas surrounding coal-fired power plants. Scientific Reports, 7(1), 46545.

    CAS  Google Scholar 

  • Liao, V. H. C., Chien, M. T., Tseng, Y. Y., & Ou, K. L. (2006). Assessment of heavy metal bioavailability in contaminated sediments and soils using green fluorescent protein-based bacterial biosensors. Environmental Pollution, 142(1), 17–23.

    CAS  Google Scholar 

  • Lin, X., Mou, R., Cao, Z., Xu, P., Wu, X., Zhu, Z., & Chen, M. (2016). Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains. Science of the Total Environment, 569, 97–104.

    Google Scholar 

  • Lingua, G., Bona, E., Todeschini, V., Cattaneo, C., Marsano, F., Berta, G., & Cavaletto, M. (2012). Effects of heavy metals and arbuscular mycorrhiza on the leaf proteome of a selected poplar clone: A time course analysis. PLoS ONE, 7(6), e38662.

    CAS  Google Scholar 

  • Liu, W., Wang, Q., Wang, B., Hou, J., Luo, Y., Tang, C., & Franks, A. E. (2015). Plant growth-promoting rhizobacteria enhance the growth and Cd uptake of Sedum plumbizincicola in a Cd-contaminated soil. Journal of Soils and Sediments, 15(5), 1191–1199.

    CAS  Google Scholar 

  • Liu, Y., Liu, G., Yuan, Z., Liu, H., & Lam, P. K. (2018). Heavy metals (As, Hg and V) and stable isotope ratios (δ13C and δ15N) in fish from Yellow River Estuary, China. Science of the Total Environment, 613, 462–471.

    Google Scholar 

  • Liu, A., Wang, W., Chen, X., Zheng, X., Fu, W., Wang, G., Ji, J., & Guan, C. (2022). Phytoremediation of DEHP and heavy metals co-contaminated soil by rice assisted with a PGPR consortium: Insights into the regulation of ion homeostasis, improvement of photosynthesis and enrichment of beneficial bacteria in rhizosphere soil. Environmental Pollution, 314, 120303.

    CAS  Google Scholar 

  • Lodenius, M., Tulisalo, E., & Soltanpour-Gargari, A. (2003). Exchange of mercury between atmosphere and vegetation under contaminated conditions. Science of the Total Environment, 304(1), 169–174.

    CAS  Google Scholar 

  • Malik, R. N., Husain, S. Z., & Nazir, I. (2010). Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad Pakistan. Pakistan Journal of Botany, 42(1), 291–301.

    CAS  Google Scholar 

  • Mallick, I., Hossain, S. T., Sinha, S., & Mukherjee, S. K. (2014). Brevibacillus sp. KUMAs2, a bacterial isolate for possible bioremediation of arsenic in rhizosphere. Ecotoxicology and Environmental Safety, 107, 236–244.

    CAS  Google Scholar 

  • Maqsood, Q., Sumrin, A., Waseem, R., Hussain, M., Imtiaz, M., Hussain, N. (2023). Bioengineered microbial strains for detoxification of toxic environmental pollutants. Environmental Research, 115665. https://doi.org/10.1016/j.envres.2023.115665.

  • Marzan, L. W., Hossain, M., Mina, S. A., Akter, Y., & Chowdhury, A. M. A. (2017). Isolation and biochemical characterization of heavy-metal resistant bacteria from tannery effluent in Chittagong city, Bangladesh: Bioremediation viewpoint. The Egyptian Journal of Aquatic Research, 43(1), 65–74.

    Google Scholar 

  • McLean, J. S., Beveridge, T. J., & Phipps, D. (2000). Isolation and characterization of a chromium-reducing bacterium from a chromated copper arsenate-contaminated site. Environmental Microbiology, 2(6), 611–619.

    CAS  Google Scholar 

  • Mishra, J., Singh, R., & Arora, N. K. (2017). Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Frontiers in Microbiology, 8, 1706.

    Google Scholar 

  • Mitra, S., Pramanik, K., Ghosh, P. K., Soren, T., Sarkar, A., Dey, R. S., Pandey, S., & Maiti, T. K. (2018). Characterization of Cd-resistant Klebsiella michiganensis MCC3089 and its potential for rice seedling growth promotion under Cd stress. Microbiological Research, 210, 12–25.

    CAS  Google Scholar 

  • Mondal, M., Kumar, V., Bhatnagar, A., Vithanage, M., Selvasembian, R., Ambade, B., Meers, E., Chaudhuri, P., & Biswas, J. K. (2022). Bioremediation of metal(loid) cocktail, struvite biosynthesis and plant growth promotion by a versatile bacterial strain Serratia sp. KUJM3: Exploiting environmental co-benefits. Environmental Research, 214, 113937.

    CAS  Google Scholar 

  • Morkunas, I., Woźniak, A., Mai, V. C., Rucińska-Sobkowiak, R., & Jeandet, P. (2018). The role of heavy metals in plant response to biotic stress. Molecules, 23(9), 2320.

    Google Scholar 

  • Mountouris, A., Voutsas, E., & Tassios, D. (2002). Bioconcentration of heavy metals in aquatic environments: The importance of bioavailability. Marine Pollution Bulletin, 44(10), 1136–1141.

    CAS  Google Scholar 

  • Mourato, M., Reis, R., & Martins, L. L. (2012). Characterization of plant antioxidative system in response to abiotic stresses: A focus on heavy metal toxicity. Advances in Selected Plant Physiology Aspects, 12, 1–17.

    Google Scholar 

  • Muhammad, S., Shah, M. T., & Khan, S. (2011). Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Microchemical Journal, 98(2), 334–343.

    CAS  Google Scholar 

  • Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8, 199–216.

    CAS  Google Scholar 

  • Naik, M. M., Pandey, A., & Dubey, S. K. (2012). Biological characterization of lead-enhanced exopolysaccharide produced by a lead resistant Enterobacter cloacae strain P2B. Biodegradation, 23, 775–783.

    CAS  Google Scholar 

  • Nazir, A., Malik, R. N., Ajaib, M., Khan, N., & Siddiqui, M. F. (2011). Hyperaccumulators of heavy metals of industrial areas of Islamabad and Rawalpindi. Pakistan Journal of Botany, 43(4), 1925–1933.

    CAS  Google Scholar 

  • Nies, D. H. (1999). Microbial heavy-metal resistance. Applied Microbiology and Biotechnology, 51, 730–750.

    CAS  Google Scholar 

  • Njoku, K., Akinyede, O., & Obidi, O. (2020). Microbial remediation of heavy metals contaminated media by Bacillus megaterium and Rhizopus stolonifer. Scientific African, 10, e00545.

    Google Scholar 

  • NRC, N.R.C. (2003). Bioavailability of contaminants in soils and sediments: processes, tools, and applications. National Academies Press.

    Google Scholar 

  • Oladipo, O. G., Awotoye, O. O., Olayinka, A., Ezeokoli, O. T., Maboeta, M. S., & Bezuidenhout, C. C. (2016). Heavy metal tolerance potential of Aspergillus strains isolated from mining sites. Bioremediation Journal, 20(4), 287–297.

    CAS  Google Scholar 

  • Olaniran, A. O., Balgobind, A., & Pillay, B. (2013). Bioavailability of heavy metals in soil: Impact on microbial biodegradation of organic compounds and possible improvement strategies. International Journal of Molecular Sciences, 14(5), 10197–10228.

    Google Scholar 

  • Oubohssaine, M., Sbabou, L., & Aurag, J. (2022). Native heavy metal-tolerant plant growth promoting rhizobacteria improves Sulla spinosissima (L.) growth in post-mining contaminated soils. Microorganisms, 10(5), 838.

    CAS  Google Scholar 

  • Oves, M., Khan, M. S., & Zaidi, A. (2013). Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. European Journal of Soil Biology, 56, 72–83.

    CAS  Google Scholar 

  • Paithankar, J. G., Saini, S., Dwivedi, S., Sharma, A., & Chowdhuri, D. K. (2021). Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction. Chemosphere, 262, 128350.

    CAS  Google Scholar 

  • Pal, A. K., & Sengupta, C. (2019). Isolation of cadmium and lead tolerant plant growth promoting rhizobacteria: Lysinibacillus varians and Pseudomonas putida from Indian agricultural soil. Soil and Sediment Contamination: An International Journal, 28(7), 601–629.

    CAS  Google Scholar 

  • Pandey, S., Ghosh, P. K., Ghosh, S., De, T. K., & Maiti, T. K. (2013). Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. Journal of Microbiology, 51, 11–17.

    CAS  Google Scholar 

  • Paria, K., Pyne, S., & Chakraborty, S. K. (2022). Optimization of heavy metal (lead) remedial activities of fungi Aspergillus penicillioides (F12) through extra cellular polymeric substances. Chemosphere, 286, 131874.

    CAS  Google Scholar 

  • Patra, M., & Sharma, A. (2000). Mercury toxicity in plants. The Botanical Review, 66(3), 379–422.

    Google Scholar 

  • Pourrut, B., Shahid, M., Dumat, C., Winterton, P., & Pinelli, E. (2011). Lead uptake, toxicity, and detoxification in plants. Reviews of Environmental Contamination and Toxicology, 213, 113–136.

    CAS  Google Scholar 

  • Pramanik, K., Mitra, S., Sarkar, A., Soren, T., & Maiti, T. K. (2018). Characterization of a Cd2+-resistant plant growth promoting rhizobacterium (Enterobacter sp.) and its effects on rice seedling growth promotion under Cd2+-stress in vitro. Agriculture and Natural Resources, 52(3), 215–221.

    Google Scholar 

  • Qadir, S., Jamshieed, S., Rasool, S., Ashraf, M., Akram, N. A., & Ahmad, P. (2014). Modulation of plant growth and metabolism in cadmium-enriched environments. Reviews of Environmental Contamination and Toxicology, 229, 51–88.

    CAS  Google Scholar 

  • Qiu, G., Feng, X., Li, P., Wang, S., Li, G., Shang, L., & Fu, X. (2008). Methylmercury accumulation in rice (Oryza sativa L.) grown at abandoned mercury mines in Guizhou, China. Journal of Agricultural and Food chemistry, 56(7), 2465–2468.

    CAS  Google Scholar 

  • Rajkumar, M., Ma, Y., & Freitas, H. (2008). Characterization of metal-resistant plant-growth promoting Bacillus weihenstephanensis isolated from serpentine soil in Portugal. Journal of Basic Microbiology, 48(6), 500–508.

    CAS  Google Scholar 

  • Reale, L., Ferranti, F., Mantilacci, S., Corboli, M., Aversa, S., Landucci, F., Baldisserotto, C., Ferroni, L., Pancaldi, S., & Venanzoni, R. (2016). Cyto-histological and morpho-physiological responses of common duckweed (Lemna minor L.) to chromium. Chemosphere, 145, 98–105.

    CAS  Google Scholar 

  • Rehman, A., Shakoori, F. R., & Shakoori, A. (2007). Heavy metal resistant Distigma proteus (Euglenophyta) isolated from industrial effluents and its possible role in bioremediation of contaminated wastewaters. World Journal of Microbiology and Biotechnology, 23, 753–758.

    CAS  Google Scholar 

  • Renu, S., Sarim, K. M., Singh, D. P., Sahu, U., Bhoyar, M. S., Sahu, A., Kaur, B., Gupta, A., Mandal, A., & Thakur, J. K. (2022). Deciphering cadmium (Cd) tolerance in newly isolated bacterial strain, Ochrobactrum intermedium BB12, and its role in alleviation of Cd stress in spinach plant (Spinacia oleracea L.). Frontiers in Microbiology, 12, 758144.

    Google Scholar 

  • Rinklebe, J., Shaheen, S. M., & Yu, K. (2016). Release of As, Ba, Cd, Cu, Pb, and Sr under pre-definite redox conditions in different rice paddy soils originating from the USA and Asia. Geoderma, 270, 21–32.

    CAS  Google Scholar 

  • Rizvi, A., Ahmed, B., Zaidi, A., & Khan, M. S. (2019). Heavy metal mediated phytotoxic impact on winter wheat: Oxidative stress and microbial management of toxicity by Bacillus subtilis BM2. RSC Advances, 9(11), 6125–6142.

    CAS  Google Scholar 

  • Rout, G.R., Das, P. (2009). Effect of Metal Toxicity on Plant Growth and Metabolism: I. Zinc. In: E. Lichtfouse, M. Navarrete, P. Debaeke, S. Véronique, C. Alberola, (Eds.) Sustainable Agriculture, Springer Netherlands. Dordrecht, pp. 873–884. https://doi.org/10.1007/978-90-481-2666-8_53.

  • Rubiya, S., Dhriti, K., & Bhat, A. (2018). Heavy metal toxicity in plants: A review. Plant Archives, 18(2), 1229–1238.

    Google Scholar 

  • Sabae, S., Hazaa, M., Hallim, S., Awny, N., & Daboor, S. (2006). Bioremediation of Zn, Cu and Fe using Bacillus subtilis d215 and Pseudomonas putida biovar ad 225. Bioscience Research, 3(1), 189–204.

    Google Scholar 

  • Saha, J., Adhikary, S., & Pal, A. (2022). Analyses of the heavy metal resistance pattern and biosorption potential of an indigenous Bacillus tropicus strain isolated from arable soil. Geomicrobiology Journal, 39(10), 891–905.

    CAS  Google Scholar 

  • Sakpirom, J., Kantachote, D., Nunkaew, T., & Khan, E. (2017). Characterizations of purple non-sulfur bacteria isolated from paddy fields, and identification of strains with potential for plant growth-promotion, greenhouse gas mitigation and heavy metal bioremediation. Research in Microbiology, 168(3), 266–275.

    CAS  Google Scholar 

  • Sandrin, T.R., Hoffman, D.R. (2007). Bioremediation of organic and metal co-contaminated environments: effects of metal toxicity, speciation, and bioavailability on biodegradation. In: S.N. Singh, R.D. Tripathi, (Eds.) Environmental Bioremediation Technologies, Springer. Berlin, Heidelberg, pp. 1–34. https://doi.org/10.1007/978-3-540-34793-4_1.

  • Sangthong, C., Setkit, K., & Prapagdee, B. (2016). Improvement of cadmium phytoremediation after soil inoculation with a cadmium-resistant Micrococcus sp. Environmental Science and Pollution Research, 23, 756–764.

    CAS  Google Scholar 

  • Saxena, D., Gowri, P. M., Mago, R., Srivastava, S. (2001). Removal of copper by Pseudomonas putida strain S4 isolated from copper mines. Indian Journal of Experimental Biology, 39, 590–593.

  • Say, R., Yılmaz, N., & Denizli, A. (2003). Biosorption of cadmium, lead, mercury, and arsenic ions by the fungus Penicillium purpurogenum. Separation Science and Technology, 38(9), 2039–2053.

    CAS  Google Scholar 

  • Schwesig, D., & Krebs, O. (2003). The role of ground vegetation in the uptake of mercury and methylmercury in a forest ecosystem. Plant and Soil, 253(2), 445–455.

    CAS  Google Scholar 

  • Seregin, I. V., & Kozhevnikova, A. D. (2008). Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium. Russian Journal of Plant Physiology, 55(1), 1–22.

    CAS  Google Scholar 

  • Shah, F.U.R., Ahmad, N., Masood, K.R., Peralta-Videa, J.R., Ahmad, F.u.D. (2010). In: M. Ashraf, M. Ozturk, M.S.A. Ahmad, (Eds.) Heavy Metal Toxicity in Plants. in: Plant Adaptation and Phytoremediation, Springer Netherlands. Dordrecht, pp. 71–97.

  • Shameer, K., Ambika, S., Varghese, S.M., Karaba, N., Udayakumar, M., Sowdhamini, R. (2009). STIFDB—Arabidopsis stress responsive transcription factor dataBase. International Journal of Plant Genomics, 2009. https://doi.org/10.1155/2009/583429.

  • Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environment International, 31(5), 739–753.

    CAS  Google Scholar 

  • Sharma, P., & Dubey, R. S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17, 35–52.

    CAS  Google Scholar 

  • Shazia, I., Uzma, S. G., & Talat, A. (2013). Bioremediation of heavy metals using isolates of filamentous fungus Aspergillus fumigatus collected from polluted soil of Kasur, Pakistan. International Research Journal of Biological Sciences, 2(12), 66–73.

    Google Scholar 

  • Shilev, S., Babrikova, I., & Babrikov, T. (2020). Consortium of plant growth-promoting bacteria improves spinach (Spinacea oleracea L.) growth under heavy metal stress conditions. Journal of Chemical Technology & Biotechnology, 95(4), 932–939.

    CAS  Google Scholar 

  • Shreya, D., **al, H. N., Kartik, V. P., & Amaresan, N. (2020). Amelioration effect of chromium-tolerant bacteria on growth, physiological properties and chromium mobilization in chickpea (Cicer arietinum) under chromium stress. Archives of Microbiology, 202, 887–894.

    CAS  Google Scholar 

  • Singh, N., Ma, L. Q., Srivastava, M., & Rathinasabapathi, B. (2006). Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L and Pteris ensiformis L. Plant Science, 170(2), 274–282.

    CAS  Google Scholar 

  • Singh, H. P., Mahajan, P., Kaur, S., Batish, D. R., & Kohli, R. K. (2013). Chromium toxicity and tolerance in plants. Environmental Chemistry Letters, 11(3), 229–254.

    CAS  Google Scholar 

  • Singh, N., Marwa, N., Mishra, J., Verma, P. C., Rathaur, S., & Singh, N. (2016a). Brevundimonas diminuta mediated alleviation of arsenic toxicity and plant growth promotion in Oryza sativa L. Ecotoxicology and Environmental Safety, 125, 25–34.

    CAS  Google Scholar 

  • Singh, S., Parihar, P., Singh, R., Singh, V. P., & Prasad, S. M. (2016b). Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ionomics. Frontiers in Plant Science, 6, 1143.

    Google Scholar 

  • Sinha, S., & Mukherjee, S. K. (2008). Cadmium–induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Current Microbiology, 56, 55–60.

    CAS  Google Scholar 

  • Sinha, D., Datta, S., Mishra, R., Agarwal, P., Kumari, T., Adeyemi, S. B., Kumar Maurya, A., Ganguly, S., Atique, U., Seal, S., Kumari Gupta, L., Chowdhury, S., & Chen, J. T. (2023). Negative Impacts of Arsenic on Plants and Mitigation Strategies. Plants, 12(9), 1815.

    CAS  Google Scholar 

  • Sparks, D. L. (2005). Toxic metals in the environment: The role of surfaces. Elements, 1(4), 193–197.

    CAS  Google Scholar 

  • Srivastava, V., Sarkar, A., Singh, S., Singh, P., De Araujo, A. S., & Singh, R. P. (2017). Agroecological responses of heavy metal pollution with special emphasis on soil health and plant performances. Frontiers in Environmental Science, 5, 64.

    Google Scholar 

  • Srivastava, V., Gupta, S. K., Singh, P., Sharma, B., & Singh, R. P. (2018). Biochemical, physiological, and yield responses of lady’s finger (Abelmoschus esculentus L.) grown on varying ratios of municipal solid waste vermicompost. International Journal of Recycling of Organic Waste in Agriculture, 7, 241–250.

    Google Scholar 

  • Sultana, R., Islam, S. M. N., & Sultana, T. (2023). Arsenic and other heavy metals resistant bacteria in rice ecosystem: Potential role in promoting plant growth and tolerance to heavy metal stress. Environmental Technology & Innovation, 31, 103160.

    CAS  Google Scholar 

  • Suman, J., Uhlik, O., Viktorova, J., & Macek, T. (2018). Phytoextraction of heavy metals: A promising tool for clean-up of polluted environment? Frontiers in Plant Science, 9, 1476.

    Google Scholar 

  • Syed, A., Elgorban, A. M., Bahkali, A. H., Eswaramoorthy, R., Iqbal, R. K., & Danish, S. (2023). Metal-tolerant and siderophore producing Pseudomonas fluorescence and Trichoderma spp. improved the growth, biochemical features and yield attributes of chickpea by lowering Cd uptake. Scientific Reports, 13(1), 4471.

    CAS  Google Scholar 

  • Sytar, O., Kumar, A., Latowski, D., Kuczynska, P., Strzałka, K., & Prasad, M. N. V. (2013). Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiologiae Plantarum, 35, 985–999.

    CAS  Google Scholar 

  • Taghavizadeh Yazdi, M. E., Amiri, M. S., Nourbakhsh, F., Rahnama, M., Forouzanfar, F., & Mousavi, S. H. (2021). Bio-indicators in cadmium toxicity: Role of HSP27 and HSP70. Environmental Science and Pollution Research, 28, 26359–26379.

    CAS  Google Scholar 

  • Thomas, J., & Archana, G. (2023). Differential influence of heavy metals on plant growth promoting attributes of beneficial microbes and their ability to promote growth of Vigna radiata (mung bean). Biocatalysis and Agricultural Biotechnology, 47, 102592.

    CAS  Google Scholar 

  • Tiwari, S., & Lata, C. (2018). Heavy metal stress, signaling, and tolerance due to plant-associated microbes: An overview. Frontiers in Plant Science, 9, 452.

    Google Scholar 

  • Tlustoš, P., Száková, J., Hrubý, J., Hartman, I., Najmanová, J., Nedělník, J., Pavlíková, D., & Batysta, M. (2006). Removal of As, Cd, Pb, and Zn from contaminated soil by high biomass producing plants. Plant Soil and Environment, 52(9), 413–423.

    Google Scholar 

  • Tripathi, M., Munot, H. P., Shouche, Y., Meyer, J. M., & Goel, R. (2005). Isolation and functional characterization of siderophore-producing lead-and cadmium-resistant Pseudomonas putida KNP9. Current Microbiology, 50, 233–237.

    CAS  Google Scholar 

  • Tripathi, M., Kumar, S., Makarana, G., & Goel, R. (2023). Metal-tolerant bioinoculant Pseudomonas putida KNP9 mediated enhancement of soybean growth under heavy metal stress suitable for biofuel production at the metal-contaminated site. Energies, 16(11), 4508.

    CAS  Google Scholar 

  • Twiss, M. R., Errécalde, O., Fortin, C., Campbell, P. G., Jumarie, C., Denizeau, F., Berkelaar, E., Hale, B., & van Rees, K. (2001). Coupling the use of computer chemical speciation models and culture techniques in laboratory investigations of trace metal toxicity. Chemical Speciation & Bioavailability, 13(1), 9–24.

    CAS  Google Scholar 

  • ÜreyenEsertaş, Ü. Z., Uzunalioğlu, E., Güzel, Ş, Bozdeveci, A., & AlpayKaraoğlu, Ş. (2020). Determination of bioremediation properties of soil-borne Bacillus sp. 5O5Y11 and its effect on the development of Zea mays in the presence of copper. Archives of Microbiology, 202(7), 1817–1829.

    Google Scholar 

  • Valdés, J., Guiñez, M., Castillo, A., & Vega, S. E. (2014). Cu, Pb, and Zn content in sediments and benthic organisms from San Jorge Bay (northern Chile): Accumulation and biotransference in subtidal coastal systems. Ciencias Marinas, 40(1), 45–58.

    Google Scholar 

  • Van Der Heijden, M. G., Bardgett, R. D., & Van Straalen, N. M. (2008). The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11(3), 296–310.

    Google Scholar 

  • Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., Thewys, T., Vassilev, A., Meers, E., Nehnevajova, E., van der Lelie, D., & Mench, M. (2009). Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environmental Science and Pollution Research, 16(7), 765–794.

    CAS  Google Scholar 

  • Vaughan, D. (2006). Arsenic. Elements, 2, 71–75.

    CAS  Google Scholar 

  • Venkatachalam, P., Jayalakshmi, N., Geetha, N., Sahi, S. V., Sharma, N. C., Rene, E. R., Sarkar, S. K., & Favas, P. J. (2017). Accumulation efficiency, genotoxicity and antioxidant defense mechanisms in medicinal plant Acalypha indica L. under lead stress. Chemosphere, 171, 544–553.

    CAS  Google Scholar 

  • Verma, S., & Kuila, A. (2019). Bioremediation of heavy metals by microbial process. Environmental Technology & Innovation, 14, 100369.

    Google Scholar 

  • Verma, J., Bhatt, A., & Agrawal, P. (2016). In-vitro study on bioaccumulation and tolerance of heavy metals by endophytic fungi Alternaria alternata isolated from Cupressus torulosa D. DON. Octa Journal of Environmental Research, 4, 146–154.

    CAS  Google Scholar 

  • Violante, A., Cozzolino, V., Perelomov, L., Caporale, A., & Pigna, M. (2010). Mobility and bioavailability of heavy metals and metalloids in soil environments. Journal of Soil Science and Plant Nutrition, 10(3), 268–292.

    Google Scholar 

  • Vivas, A., Barea, J. M., & Azcón, R. (2005). Brevibacillus brevis isolated from cadmium-or zinc-contaminated soils improves in vitro spore germination and growth of Glomus mosseae under high Cd or Zn concentrations. Microbial Ecology, 49, 416–424.

    CAS  Google Scholar 

  • Wang, Y., & Greger, M. (2004). Clonal differences in mercury tolerance, accumulation, and distribution in willow. Journal of Environmental Quality, 33(5), 1779–1785.

    CAS  Google Scholar 

  • Wang, R., Gao, F., Guo, B. Q., Huang, J. C., Wang, L., & Zhou, Y. J. (2013). Short-term chromium-stress-induced alterations in the maize leaf proteome. International Journal of Molecular Sciences, 14(6), 11125–11144.

    Google Scholar 

  • Wang, N., Wang, Y., Li, B., Huang, F., Sun, C., Li, X., Zhao, R., & Wang, Y. (2023). Characteristics of a copper-cadmium tolerant strain screened from tailings and its potential in remediation of heavy metal contaminated soil. Water, Air, & Soil Pollution, 234(4), 277.

    CAS  Google Scholar 

  • Wani, P. A., & Khan, M. S. (2013). Nickel detoxification and plant growth promotion by multi metal resistant plant growth promoting Rhizobium species RL9. Bulletin of Environmental Contamination and Toxicology, 91, 117–124.

    CAS  Google Scholar 

  • Wei, G., Fan, L., Zhu, W., Fu, Y., Yu, J., & Tang, M. (2009). Isolation and characterization of the heavy metal resistant bacteria CCNWRS33-2 isolated from root nodule of Lespedeza cuneata in gold mine tailings in China. Journal of Hazardous Materials, 162(1), 50–56.

    CAS  Google Scholar 

  • Wolterbeek, H. T., & Van der Meer, A. (2002). Transport rate of arsenic, cadmium, copper and zinc in Potamogeton pectinatus L.: radiotracer experiments with 76As, 109,115 Cd, 64Cu and 65, 69mZn. Science of the Total Environment, 287(1–2), 13–30.

    CAS  Google Scholar 

  • **e, Y., Bu, H., Feng, Q., Wassie, M., Amee, M., Jiang, Y., Bi, Y., Hu, L., & Chen, L. (2021). Identification of Cd-resistant microorganisms from heavy metal-contaminated soil and its potential in promoting the growth and Cd accumulation of bermudagrass. Environmental Research, 200, 111730.

    CAS  Google Scholar 

  • **ong, T., Dumat, C., Pierart, A., Shahid, M., Kang, Y., Li, N., Bertoni, G., & Laplanche, C. (2016). Measurement of metal bioaccessibility in vegetables to improve human exposure assessments: Field study of soil–plant–atmosphere transfers in urban areas, South China. Environmental Geochemistry and Health, 38, 1283–1301.

    CAS  Google Scholar 

  • Xu, S., **ng, Y., Liu, S., Huang, Q., & Chen, W. (2019). Role of novel bacterial Raoultella sp. strain X13 in plant growth promotion and cadmium bioremediation in soil. Applied Microbiology and Biotechnology, 103, 3887–3897.

    CAS  Google Scholar 

  • Yan, A., Wang, Y., Tan, S. N., Mohd Yusof, M. L., Ghosh, S., & Chen, Z. (2020). Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science, 11, 359.

    Google Scholar 

  • Yetunde Mutiat, F.-B., Gbolahan, B., & Olu, O. (2018). A comparative study of the wild and mutated heavy metal resistant Klebsiella variicola generated for cadmium bioremediation. Bioremediation Journal, 22(1–2), 28–42.

    CAS  Google Scholar 

  • Yruela, I. (2005). Copper in plants. Brazilian Journal of Plant Physiology, 17, 145–156.

    CAS  Google Scholar 

  • Zaid, A., Mohammad, F., & Fariduddin, Q. (2020). Plant growth regulators improve growth, photosynthesis, mineral nutrient and antioxidant system under cadmium stress in menthol mint (Mentha arvensis L.). Physiology and Molecular Biology of Plants, 26, 25–39.

    CAS  Google Scholar 

  • Zaynab, M., Al-Yahyai, R., Ameen, A., Sharif, Y., Ali, L., Fatima, M., Khan, K. A., & Li, S. (2022). Health and environmental effects of heavy metals. Journal of King Saud University-Science, 34(1), 101653.

    Google Scholar 

  • Zhu, H., Guo, J., Chen, M., Feng, G., & Yao, Q. (2012). Burkholderia dabaoshanensis sp. nov., a heavy metal tolerant bacteria isolated from Dabaoshan mining area soil in China. PloS One, 7(12), e50225.

    CAS  Google Scholar 

Download references

Funding

The authors are grateful to the Department of Environment, Science & Technology (DEST), Shimla funded project “Development of Microbial Consortium as Bio-inoculants for Drought and Low Temperature Growing Crops for Organic Farming in Himachal Pradesh” for providing the facilities to undertake the investigations.

Author information

Authors and Affiliations

Authors

Contributions

Divjot Kour: Writing, Babita Sharma: Writing, Rajeshwari Negi: Writing, Sanjeev Kumar: Figure, Simranjeet Kaur: Writing, Tanvir Kaur: Writing, Sofia Sharief Khan: Writing, Harpreet Kour: Writing and editing, Seema Ramniwas: Writing, Sarvesh Rustegi: Table, Ashutosh Kumar Rai, Table, Sangram Singh: Formating, Sheikh Shreaz: Reviewing; Ajar Nath Yadav: Conceptualization and Reviewing, Amrik Singh Ahluwalia: Reviewing.

Corresponding author

Correspondence to Ajar Nath Yadav.

Ethics declarations

Ethics Approval and Consent to Participate

NA

Consent for Publication

NA.

Confict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kour, D., Sharma, B., Negi, R. et al. Microbial Amelioration of Heavy Metal Toxicity in Plants for Agro-Environmental Sustainability. Water Air Soil Pollut 235, 431 (2024). https://doi.org/10.1007/s11270-024-07251-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-07251-w

Keywords

Navigation