Log in

Enhancing Phytoremediation Efficacy in Plants Cultivated in Heavy Metal-Contaminated Soil Under Drought Stress: Understanding Plant Responses and Genetic Engineering Strategies

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The contamination of soil by heavy metals poses a significant challenge, impacting various living organisms. Phytoremediation has emerged as an environmentally friendly approach for reclaiming soil polluted by heavy metals. The efficacy of phytoremediation depends on the ability of plants to thrive in soil contaminated with heavy metals. The anticipated changes in climate, particularly the predicted increase in the intensity and frequency of drought, are expected to influence the efficiency of phytoremediation by affecting plant performance. Numerous studies have explored the responses of plants to either drought or heavy metal stress individually. Yet, the impact of interaction of these two stresses on plants remains incompletely understood. The complexity of predicting plants' reactions to combined stresses underscores the importance of understanding their responses both separately and in combination. This comprehension is crucial for the development of plants capable of withstanding both heavy metals and drought stress. Use of such plants can serve as a pivotal strategy to augment the effectiveness of phytoremediation, particularly in the context of evolving climatic conditions. The progress in modern biotechnological tools has enabled the rapid development of engineered crop plants with enhanced traits through the transfer of desirable genes. Genetic engineering has yielded various transgenic plants, incorporating genes associated with stress responses, showcasing notable tolerance to both drought and heavy metals. This review compiles up-to-date research on how plants respond to drought, heavy metal toxicity, and their combination. It explores the potential of genetically engineered plants to address these challenges, discusses recent advancements, and highlights current research gaps in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  • Ahmed, T., Noman, M., Manzoor, N., Shahid, M., Abdullah, M., Ali, L., & Li, B. (2021). Nanoparticle-based amelioration of drought stress and cadmium toxicity in rice via triggering the stress responsive genetic mechanisms and nutrient acquisition. Ecotoxicology and Environmental Safety, 209, 111829. https://doi.org/10.1016/j.ecoenv.2020.111829

    Article  CAS  Google Scholar 

  • Ai, T. N., Naing, A. H., Yun, B. W., Lim, S. H., & Kim, C. K. (2018). Overexpression of RsMYB1 enhances anthocyanin accumulation and heavy metal stress tolerance in transgenic petunia. Frontiers in Plant Science, 9, 1388. https://doi.org/10.3389/fpls.2018.01388

    Article  Google Scholar 

  • Ali, E., Hussain, N., Shamsi, I. H., Jabeen, Z., Siddiqui, M. H., & Jiang, L. X. (2018). Role of jasmonic acid in improving tolerance of rapeseed (Brassica napus L.) to Cd toxicity. Journal of Zhejiang University. Science. B, 19, 130–146. https://doi.org/10.1631/jzus.B1700191

    Article  CAS  Google Scholar 

  • Asgher, M., Per, T. S., Anjum, S., Khan, M. I. R., Masood, A., Verma, S., & Khan, N. A. (2017). Contribution of glutathione in heavy metal stress tolerance in plants. In M. Iqbal, R. Khan, & N. A. Khan (Eds.), reactive oxygen species and antioxidant systems in plants: Role and regulation under abiotic stress (pp. 297–313). Springer. https://doi.org/10.1007/978-981-10-5254-5_12

    Chapter  Google Scholar 

  • Atkinson, N., & Urwin, P. E. (2012). The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany, 63, 3523–3544. https://doi.org/10.1093/jxb/ers100

    Article  CAS  Google Scholar 

  • Bakhshi, B., Mohseni Fard, E., Nikpay, N., Ebrahimi, M. A., Bihamta, M. R., Mardi, M., & Salekdeh, G. H. (2016). MicroRNA signatures of drought signaling in rice root. PLoS ONE, 11, e0156814. https://doi.org/10.1371/journal.pone.0156814

    Article  CAS  Google Scholar 

  • Bao, A. K., Wang, S. M., Wu, G. Q., **, J. J., Zhang, J. L., & Wang, C. M. (2009). Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Science, 176, 232–240. https://doi.org/10.1016/j.plantsci.2008.10.009

    Article  CAS  Google Scholar 

  • Bashir, W., Anwar, S., Zhao, Q., Hussain, I., & **e, F. (2019). Interactive effect of drought and cadmium stress on soybean root morphology and gene expression. Ecotoxicology and Environmental Safety, 15(175), 90–101. https://doi.org/10.1016/j.ecoenv.2019.03.042

    Article  CAS  Google Scholar 

  • Berg, A., & Sheffield, J. (2018). Climate change and drought: the soil moisture perspective. Current Climate Change Reports, 4, 180–191. https://doi.org/10.1007/s40641-018-0095-0

    Article  Google Scholar 

  • Bhuiyan, M. S. U., Min, S. R., Jeong, W. J., Sultana, S., Choi, K. S., Lee, Y., & Liu, J. R. (2011). Overexpression of AtATM3 in Brassica juncea confers enhanced heavy metal tolerance and accumulation. Plant Cell, Tissue and Organ Culture, 107, 69–77. https://doi.org/10.1007/s11240-011-9958-y

    Article  CAS  Google Scholar 

  • Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6, e04691. https://doi.org/10.1016/j.heliyon.2020.e04691

    Article  CAS  Google Scholar 

  • Bundó, M., & Coca, M. (2017). Calcium-dependent protein kinase OsCPK10 mediates both drought tolerance and blast disease resistance in rice plants. Journal of Experimental Botany, 68, 2963–2975. https://doi.org/10.1093/jxb/erx145

    Article  CAS  Google Scholar 

  • Carrillo, J. T., & Borthakur, D. (2021). Methods for metal chelation in plant homeostasis. Plant Physiology and Biochemistry, 163, 95–107. https://doi.org/10.1016/j.plaphy.2021.03.045

    Article  CAS  Google Scholar 

  • Chaturvedi, A. K., Patel, M. K., Mishra, A., Tiwari, V., & Jha, B. (2014). The SbMT-2 gene from a halophyte confers abiotic stress tolerance and modulates ROS scavenging in transgenic tobacco. PLoS ONE, 9, e111379. https://doi.org/10.1371/journal.pone.0111379

    Article  CAS  Google Scholar 

  • Chaudhary, K., Agarwal, S., & Khan, S. (2018). Role of phytochelatins (PCs), metallothioneins (MTs), and heavy metal ATPase (HMA) genes in heavy metal tolerance. In R. Prasad (Ed.), Mycoremediation and environmental sustainability (pp. 39–60). Springer. https://doi.org/10.1007/978-3-319-77386-5_2

    Chapter  Google Scholar 

  • Chen, Z., Zhu, D., Wu, J., Cheng, Z., Yan, X., Deng, X., & Yan, Y. (2018). Identification of differentially accumulated proteins involved in regulating independent and combined osmosis and cadmium stress response in Brachypodium seedling roots. Science and Reports, 8, 1–17. https://doi.org/10.1038/s41598-018-25959-8

    Article  CAS  Google Scholar 

  • Cheng, Z., Zhang, X., Zhao, K., Yao, W., Li, R., Zhou, B., & Jiang, T. (2019). Over-expression of ERF38 gene enhances salt and osmotic tolerance in transgenic poplar. Frontiers in Plant Science, 10, 1375. https://doi.org/10.3389/fpls.2019.01375

    Article  Google Scholar 

  • Cook, B. I., Mankin, J. S., & Anchukaitis, K. J. (2018). Climate change and drought: from past to future. Current Climate Change Reports, 4, 164–179. https://doi.org/10.1007/s40641-018-0093-2

    Article  Google Scholar 

  • de Silva, N. D. G., Cholewa, E., & Ryser, P. (2012). Effects of combined drought and heavy metal stresses on xylem structure and hydraulic conductivity in red maple (Acer rubrum L.). Journal of Experimental Botany, 63, 5957–5966. https://doi.org/10.1093/jxb/ers241

    Article  CAS  Google Scholar 

  • Di Toppi, L. S., & Gabbrielli, R. (1999). Response to cadmium in higher plants. Environmental and Experimental Botany, 41, 105–130. https://doi.org/10.1016/S0098-8472(98)00058-6

    Article  Google Scholar 

  • Ehsanpour, A. A., Zarei, S., & Abbaspour, J. (2012). The role of over expression of P5CS gene on proline, catalase, ascorbate peroxidase activity and lipid peroxidation of transgenic tobacco (Nicotiana tabacum L.) plant under in vitro drought stress. Journal of Cell and Molecular Research, 4, 43–49.

    Google Scholar 

  • Ejaz, U., Khan, S. M., Khalid, N., Ahmad, Z., Jehangir, S., Lho, L. H., ... Raposo, A. (2023). Detoxifying the heavy metals: a multipronged study of tolerance strategies against heavy metals toxicity in plants. Frontiers in Plant Science, 14, 1154571. https://doi.org/10.3389/fpls.2023.1154571

  • Faizan, M., Alam, P., Hussain, A., Karabulut, F., Tonny, S. H., Cheng, S. H., ... Hayat, S. (2024). Phytochelatins: A key regulator against heavy metal toxicity in plants. Plant Stress, 11, 100355. https://doi.org/10.1016/j.stress.2024.100355

  • Getahun, D. (2020). Predictions of climate change on agricultural insect pests Vis-à-Vis food crop productivity: a critical review. Ethiopian Journal of Science and Sustainable Development, 7, 18–26.

    Google Scholar 

  • Ghuge, S. A., Nikalje, G. C., Kadam, U. S., Suprasanna, P., & Hong, J. C. (2023). Comprehensive mechanisms of heavy metal toxicity in plants, detoxification, and remediation. Journal of Hazardous Materials, 450, 131039. https://doi.org/10.1016/j.jhazmat.2023.131039

    Article  CAS  Google Scholar 

  • Gupta, A., Rico-Medina, A., & Caño-Delgado, A. I. (2020). The physiology of plant responses to drought. Science, 368, 266–269. https://doi.org/10.1126/science.aaz7614

    Article  CAS  Google Scholar 

  • Han, S. E., Park, S. R., Kwon, H. B., Yi, B. Y., Lee, G. B., & Byun, M. O. (2005). Genetic engineering of drought-resistant tobacco plants by introducing the trehalose phosphorylase (TP) gene from Pleurotus sajor-caju. Plant Cell, Tissue and Organ Culture, 82, 151–158. https://doi.org/10.1007/s11240-004-8124-1

    Article  CAS  Google Scholar 

  • Han, Y., Sa, G., Sun, J., Shen, Z., Zhao, R., Ding, M., Deng, S., Lu, Y., Zhang, Y., Shen, X., & Chen, S. (2014). Overexpression of Populus euphratica xyloglucan endotransglucosylase/hydrolase gene confers enhanced cadmium tolerance by the restriction of root cadmium uptake in transgenic tobacco. Environmental and Experimental Botany, 100, 74–83. https://doi.org/10.1016/j.envexpbot.2013.12.021

    Article  CAS  Google Scholar 

  • Hosseinniaee, S., Jafari, M., Tavili, A., Zare, S., & Cappai, G. (2023). Investigating metal pollution in the food chain surrounding a lead-zinc mine (Northwestern Iran); an evaluation of health risks to humans and animals. Environmental Monitoring and Assessment, 195(8), 946. https://doi.org/10.1007/s10661-023-11551-9

    Article  CAS  Google Scholar 

  • Hu, T., Zhu, S., Tan, L., Qi, W., He, S., & Wang, G. (2016). Overexpression of OsLEA4 enhances drought, high salt and heavy metal stress tolerance in transgenic rice (Oryza sativa L.). Environmental and Experimental Botany, 123, 68–77. https://doi.org/10.1016/j.envexpbot.2015.10.002

    Article  CAS  Google Scholar 

  • Huang, C., Zhou, J., Jie, Y., **ng, H., Zhong, Y., She, W., Wei, G., Yu, W., & Ma, Y. (2016). A ramie (Boehmeria nivea) bZIP transcription factor BnbZIP3 positively regulates drought, salinity and heavy metal tolerance. Molecular Breeding, 36, 1–15. https://doi.org/10.1007/s11032-016-0470-2

    Article  CAS  Google Scholar 

  • Huang, D., Zhou, W., Chen, S., Tao, J., Li, R., Yin, L., ... & Chen, H. (2022). Presence of polystyrene microplastics in Cd contaminated water promotes Cd removal by nano zero-valent iron and ryegrass (Lolium Perenne L.). Chemosphere, 303, 134729. https://doi.org/10.1016/j.chemosphere.2022.134729

  • Ivanova, L. A., Ronzhina, D. A., Ivanov, L. A., Stroukova, L. V., Peuke, A. D., & Rennenberg, H. (2011). Over-expression of gsh1 in the cytosol affects the photosynthetic apparatus and improves the performance of transgenic poplars on heavy metal-contaminated soil. Plant Biology, 13, 649–659. https://doi.org/10.1111/j.1438-8677.2010.00422.x

    Article  CAS  Google Scholar 

  • Jain, S., Kumar, D., Jain, M., Chaudhary, P., Deswal, R., & Sarin, N. B. (2012). Ectopic overexpression of a salt stress-induced pathogenesis-related class 10 protein (PR10) gene from groundnut affords broad spectrum abiotic stress tolerance in transgenic tobacco. Plant Cell, Tissue and Organ Culture, 109, 19–31. https://doi.org/10.1007/s11240-011-0069-6

    Article  CAS  Google Scholar 

  • Jami, S. K., Clark, G. B., Turlapati, S. A., Handley, C., Roux, S. J., & Kirti, P. B. (2008). Ectopic expression of an annexin from Brassica juncea confers tolerance to abiotic and biotic stress treatments in transgenic tobacco. Plant Physiology and Biochemistry, 46, 1019–1030. https://doi.org/10.1016/j.plaphy.2008.07.006

    Article  CAS  Google Scholar 

  • Janiak, A., Kwaśniewski, M., & Szarejko, I. (2016). Gene expression regulation in roots under drought. Journal of Experimental Botany, 67, 1003–1014. https://doi.org/10.1093/jxb/erv512

    Article  CAS  Google Scholar 

  • Jha, A. B., & Sharma, P. (2019). Regulation of osmolytes syntheses and improvement of abiotic stress tolerance in plants. In M. Hasanuzzaman, K. Nahar, M. Fujita, H. Oku, & T. Islam (Eds.), Approaches for enhancing abiotic stress tolerance in plants (pp. 311–338). CRC Press. https://doi.org/10.1201/9781351104722-17

    Chapter  Google Scholar 

  • Jha, A. B., Misra, A. N., & Sharma, P. (2017). Phytoremediation of heavy metal-contaminated soil using bioenergy crops. In K. Bauddh, B. Singh, & J. Korstad (Eds.), Phytoremediation potential of bioenergy plants (pp. 63–96). Springer. https://doi.org/10.1007/978-981-10-3084-0_3

    Chapter  Google Scholar 

  • Jia, D., Jiang, Q., van Nocker, S., Gong, X., & Ma, F. (2019). An apple (Malus domestica) NAC transcription factor enhances drought tolerance in transgenic apple plants. Plant Physiology and Biochemistry, 139, 504–512. https://doi.org/10.1016/j.plaphy.2019.04.011

    Article  CAS  Google Scholar 

  • Jiang, Y., Han, J., Xue, W., Wang, J., Wang, B., Liu, L., & Zou, J. (2021). Overexpression of SmZIP plays important roles in Cd accumulation and translocation, subcellular distribution, and chemical forms in transgenic tobacco under Cd stress. Ecotoxicology and Environmental Safety, 214, 112097. https://doi.org/10.1016/j.ecoenv.2021.112097

    Article  CAS  Google Scholar 

  • **, R., Kim, B. H., Ji, C. Y., Kim, H. S., Li, H. M., & Kwak, S. S. (2017). Overexpressing IbCBF3 increases low temperature and drought stress tolerance in transgenic sweetpotato. Plant Physiology and Biochemistry, 118, 45–54. https://doi.org/10.1016/j.plaphy.2017.06.002

    Article  CAS  Google Scholar 

  • **g, H., Wilkinson, E. G., Sageman-Furnas, K., & Strader, L. C. (2023). Auxin and abiotic stress responses. Journal of Experimental Botany, 4(22), 7000–7014. https://doi.org/10.1093/jxb/erad325

    Article  CAS  Google Scholar 

  • Ju, Y. L., Yue, X. F., Min, Z., Wang, X. H., Fang, Y. L., & Zhang, J. X. (2020). VvNAC17, a novel stress-responsive grapevine (Vitis vinifera L.) NAC transcription factor, increases sensitivity to abscisic acid and enhances salinity, freezing, and drought tolerance in transgenic Arabidopsis. Plant Physiology and Biochemistry, 146, 98–111. https://doi.org/10.1016/j.plaphy.2019.11.002

    Article  CAS  Google Scholar 

  • Jung, H., Chung, P. J., Park, S. H., Redillas, M. C. F. R., Kim, Y. S., Suh, J. W., & Kim, J. K. (2017). Overexpression of Os ERF 48 causes regulation of OsCML 16, a calmodulin-like protein gene that enhances root growth and drought tolerance. Plant Biotechnology Journal, 15, 1295–1308. https://doi.org/10.1111/pbi.12716

    Article  CAS  Google Scholar 

  • Kang, T., Yu, C. Y., Liu, Y., Song, W. M., Bao, Y., Guo, X. T., Li, B., & Zhang, H. X. (2020). Subtly manipulated expression of ZmmiR156 in tobacco improves drought and salt tolerance without changing the architecture of transgenic plants. Frontiers in Plant Science, 10, 1664. https://doi.org/10.3389/fpls.2019.01664

    Article  Google Scholar 

  • Kim, S. E., Lee, C. J., Ji, C. Y., Kim, H. S., Park, S. U., Lim, Y. H., Park, W. S., Ahn, M. J., Bian, X., **e, Y., & Guo, X. (2019). Transgenic sweetpotato plants overexpressing tocopherol cyclase display enhanced α-tocopherol content and abiotic stress tolerance. Plant Physiology and Biochemistry, 144, 436–444. https://doi.org/10.1016/j.plaphy.2019.09.046

    Article  CAS  Google Scholar 

  • Kniuipytė, I., Dikšaitytė, A., Praspaliauskas, M., Pedišius, N., & Žaltauskaitė, J. (2023). Oilseed rape (Brassica napus L.) potential to remediate Cd contaminated soil under different soil water content. Journal of Environmental Management, 325, 116627. https://doi.org/10.1016/j.jenvman.2022.116627

    Article  CAS  Google Scholar 

  • Kohli, S. K., Handa, N., Kaur, R., Kumar, V., Khanna, K., Bakshi, P., Singh, R., Arora, S., Kaur, R., & Bhardwaj, R. (2017). Role of salicylic acid in heavy metal stress tolerance: insight into underlying mechanism. In R. Nazar, N. Iqbal, & N. A. Khan (Eds.), Salicylic acid: a multifaceted hormone (pp. 123–144). Springer. https://doi.org/10.1007/978-981-10-6068-7_7

    Chapter  Google Scholar 

  • Kolaj-Robin, O., Russell, D., Hayes, K. A., Pembroke, J. T., & Soulimane, T. (2015). Cation diffusion facilitator family: structure and function. FEBS Letters, 589(12), 1283–1295. https://doi.org/10.1016/j.febslet.2015.04.007

    Article  CAS  Google Scholar 

  • Krzesłowska, M. (2011). The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiologiae Plantarum, 33, 35–51. https://doi.org/10.1007/s11738-010-0581-z

    Article  CAS  Google Scholar 

  • Krzyżak, J., Rusinowski, S., Sitko, K., Szada-Borzyszkowska, A., Stec, R., Janota, P., Jensen, E., Kiesel, A., & Pogrzeba, M. (2023). The effect of combined drought and trace metal elements stress on the physiological response of three Miscanthus hybrids. Science and Reports, 13, 10452. https://doi.org/10.1038/s41598-023-37564-5

    Article  CAS  Google Scholar 

  • Kudo, M., Kidokoro, S., Yoshida, T., Mizoi, J., Todaka, D., Fernie, A. R., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2017). Double overexpression of DREB and PIF transcription factors improves drought stress tolerance and cell elongation in transgenic plants. Plant Biotechnology Journal, 15, 458–471. https://doi.org/10.1111/pbi.12644

    Article  CAS  Google Scholar 

  • Kumar, S., Asif, M. H., Chakrabarty, D., Tripathi, R. D., Dubey, R. S., & Trivedi, P. K. (2013). Expression of a rice Lambda class of glutathione S-transferase, OsGSTL2, in Arabidopsis provides tolerance to heavy metal and other abiotic stresses. Journal of Hazardous Materials, 248, 228–237. https://doi.org/10.1016/j.jhazmat.2013.01.004

    Article  CAS  Google Scholar 

  • Kumar, K., Gupta, D., Mosa, K. A., Ramamoorthy, K., & Sharma, P. (2019). Arsenic transport, metabolism, and possible mitigation strategies in plants. In S. Srivastava, A. K. Srivastava, & P. Suprasanna (Eds.), Plant-metal interactions (pp. 141–168). Springer. https://doi.org/10.1007/978-3-030-20732-8_8

    Chapter  Google Scholar 

  • Kumar, A., Dubey, A. K., Kumar, V., Ansari, M. A., Narayan, S., Kumar, S., Pandey, V., Shirke, P. A., Pande, V., & Sanyal, I. (2020). Over-expression of chickpea glutaredoxin (CaGrx) provides tolerance to heavy metals by reducing metal accumulation and improved physiological and antioxidant defence system. Ecotoxicology and Environmental Safety, 192, 110252. https://doi.org/10.1016/j.ecoenv.2020.110252

    Article  CAS  Google Scholar 

  • Kumar, S., Yadav, A., Verma, R., Dubey, A. K., Narayan, S., Pandey, A., ... Sanyal, I. (2022). Metallothionein (MT1): A molecular stress marker in chickpea enhances drought and heavy metal stress adaptive efficacy in transgenic plants. Environmental and Experimental Botany, 199,104871. https://doi.org/10.1016/j.envexpbot.2022.104871

  • Li, G., Santoni, V., & Maurel, C. (2014). Plant aquaporins: roles in plant physiology. Biochimica Et Biophysica Acta, 1840(5), 1574–1582. https://doi.org/10.1016/j.bbagen.2013.11.004

    Article  CAS  Google Scholar 

  • Li, Q., Zhang, X., Lv, Q., Zhu, D., Qiu, T., Xu, Y., Bao, F., He, Y., & Hu, Y. (2017). Physcomitrella patens dehydrins (PpDHNA and PpDHNC) confer salinity and drought tolerance to transgenic Arabidopsis plants. Frontiers in Plant Science, 8, 1316. https://doi.org/10.3389/fpls.2017.01316

    Article  CAS  Google Scholar 

  • Li, P., Zhang, B., Su, T., Li, P., **n, X., Wang, W., Zhao, X., Yu, Y., Zhang, D., Yu, S., & Zhang, F. (2018). BrLAS, a GRAS transcription factor from Brassica rapa, is involved in drought stress tolerance in transgenic Arabidopsis. Frontiers in Plant Science, 9, 1792. https://doi.org/10.3389/fpls.2018.01792

    Article  Google Scholar 

  • Li, Y., Zhang, H., Zhang, Q., Liu, Q., Zhai, H., Zhao, N., & He, S. (2019a). An AP2/ERF gene, IbRAP2-12, from sweetpotato is involved in salt and drought tolerance in transgenic Arabidopsis. Plant Science, 281, 19–30. https://doi.org/10.1016/j.plantsci.2019.01.009

    Article  CAS  Google Scholar 

  • Li, Z., Li, L., Zhou, K., Zhang, Y., Han, X., Din, Y., Ge, X., Qin, W., Wang, P., Li, F., & Ma, Z. (2019b). GhWRKY6 acts as a negative regulator in both transgenic Arabidopsis and cotton during drought and salt stress. Frontiers in Genetics, 10, 392. https://doi.org/10.3389/fgene.2019.00392

    Article  CAS  Google Scholar 

  • Li, Q., Wang, G., Guan, C., Yang, D., Wang, Y., Zhang, Y., Ji, J., **, C., & An, T. (2019c). Overexpression of LcSABP, an orthologous gene for salicylic acid binding protein 2, enhances drought stress tolerance in transgenic tobacco. Frontiers in Plant Science, 10, 200. https://doi.org/10.1007/s12298-013-0179-1

    Article  CAS  Google Scholar 

  • Li, Q., Zhao, H., Wang, X., Kang, J., Lv, B., Dong, Q., Li, C., Chen, H., & Wu, Q. (2020). Tartary buckwheat transcription factor FtbZIP5, regulated by FtSnRK2. 6, can improve salt/drought resistance in transgenic Arabidopsis. International Journal of Molecular Sciences, 21, 1123. https://doi.org/10.3390/ijms21031123

    Article  CAS  Google Scholar 

  • Li, S., Sun, J. Y., Wang, H. Y., **g, H. K., Shen, R. F., & Zhu, X. F. (2024). Auxin acts upstream of nitric oxide to regulate cell wall xyloglucan and its aluminium-binding capacity in Arabidopsis thaliana. Planta, 259, 1–12. https://doi.org/10.1007/s00425-024-04331-3

    Article  CAS  Google Scholar 

  • Li, G., Yan, L., Chen, X., Lam, S. S., Rinklebe, J., Yu, Q., ... Sonne, C. (2023). Phytoremediation of cadmium from soil, air and water. Chemosphere, 138058. https://doi.org/10.1016/j.chemosphere.2023.138058

  • Liu, R., Jiao, T., Li, J., Feng, Y., Wang, A., Wu, S., Du, L., & Jian-bo, Z. (2019). Ectopic expression of the Pseudomonas aeruginosa KatA gene in cotton improves its drought tolerance and yield under drought stress. Molecular Breeding, 39, 1–15. https://doi.org/10.1007/s11032-019-1027-y

    Article  CAS  Google Scholar 

  • Liu, W., Wang, T., Wang, Y., Liang, X., Han, J., & Han, D. (2023). MbMYBC1, a M. baccata MYB transcription factor, contribute to cold and drought stress tolerance in transgenic Arabidopsis. Frontiers in Plant Science, 14, 1141446. https://doi.org/10.3389/fpls.2023.1141446

    Article  Google Scholar 

  • Ma, Z., Zhao, B., Zhang, H., Duan, S., Liu, Z., Guo, X., ... Li, G. (2024). Upregulation of wheat heat shock transcription factor tahsfc3–4 by aba contributes to drought tolerance. International Journal of Molecular Sciences, 25(2), 977. https://doi.org/10.3390/ijms25020977

  • Madhusudhan, K. V., & Sudhakar, C. (2023). Differential responses of growth, antioxidant enzymes and osmolytes in the leaves of two groundnut (Arachis hypogaea L.) cultivars subjected to water stress. Journal of Stress Physiology & Biochemistry, 19, 110–124.

    CAS  Google Scholar 

  • Mahmood, T., Khalid, S., Abdullah, M., Ahmed, Z., Shah, M. K. N., Ghafoor, A., & Du, X. (2020). Insights into drought stress signaling in plants and the molecular genetic basis of cotton drought tolerance. Cells, 9, 105. https://doi.org/10.3390/cells9010105

    Article  CAS  Google Scholar 

  • Manuka, R., Saddhe, A. A., Srivastava, A. K., Kumar, K., & Penna, S. (2021). Overexpression of rice OsWNK9 promotes arsenite tolerance in transgenic Arabidopsis plants. Journal of Biotechnology, 332, 114–125. https://doi.org/10.1016/j.jbiotec.2021.04.001

    Article  CAS  Google Scholar 

  • Martinoia, E. (2018). Vacuolar transporters-companions on a longtime journey. Plant Physiology, 176, 1384–1407. https://doi.org/10.1104/pp.17.01481

    Article  CAS  Google Scholar 

  • Maurel, C., Verdoucq, L., & Rodrigues, O. (2016). Aquaporins and plant transpiration. Plant, Cell and Environment, 39(11), 2580–2587. https://doi.org/10.1111/pce.12814

    Article  CAS  Google Scholar 

  • Mbinda, W., Ombori, O., Dixelius, C., & Oduor, R. (2018). Xerophyta viscosa aldose reductase, XvAld1, enhances drought tolerance in transgenic sweetpotato. Molecular Biotechnology, 60, 203–214. https://doi.org/10.1007/s12033-018-0063-x

    Article  CAS  Google Scholar 

  • Mekawy, A. M., Abdelaziz, M. N., & Ueda, A. (2020). Constitutive overexpression of rice metallothionein-like gene OsMT-3a enhances growth and tolerance of Arabidopsis plants to a combination of various abiotic stresses. Journal of Plant Research, 133, 429–440. https://doi.org/10.1007/s10265-020-01187-y

    Article  Google Scholar 

  • Mihaljević, I., ViljevacVuletić, M., Šimić, D., Tomaš, V., Horvat, D., Josipović, M., Zdunić, Z., Dugalić, K., & Vuković, D. (2021). Comparative study of drought stress effects on traditional and modern apple cultivars. Plants, 10(3), 561.

    Article  Google Scholar 

  • Minh, B. M., Linh, N. T., Hanh, H. H., Hien, L. T. T., Thang, N. X., Hai, N. V., & Hue, H. T. T. (2019). A LEA gene from a Vietnamese maize landrace can enhance the drought tolerance of transgenic maize and tobacco. Agronomy, 9, 62. https://doi.org/10.3390/agronomy9020062

    Article  CAS  Google Scholar 

  • Mishra, P., & Sharma, P. (2019). Superoxide Dismutases (SODs) and their role in regulating abiotic stress induced oxidative stress in plants. In: Hasanuzzaman, M., Fotopoulos, V., Nahar, K., & Fujita, M. (eds). Reactive oxygen, nitrogen and sulfur species in plants: production, metabolism, signaling and defense mechanisms, pp 53–88. https://doi.org/10.1002/9781119468677.ch3

  • Muhammad, T., Zhang, J., Ma, Y., Li, Y., Zhang, F., Zhang, Y., & Liang, Y. (2019). Overexpression of a mitogen-activated protein kinase SlMAPK3 positively regulates tomato tolerance to cadmium and drought stress. Molecules, 24, 556. https://doi.org/10.3390/molecules24030556

    Article  CAS  Google Scholar 

  • Mukarram, M., Choudhary, S., Kurjak, D., Petek, A., & Khan, M. M. A. (2021). Drought: Sensing, signalling, effects and tolerance in higher plants. Physiologia Plantarum, 172(2), 1291–1300. https://doi.org/10.1111/ppl.13423

    Article  CAS  Google Scholar 

  • Mukherjee, S., Mishra, A., & Trenberth, K. E. (2018). Climate change and drought: a perspective on drought indices. Current Climate Change Reports, 4, 145–163. https://doi.org/10.1007/s40641-018-0098-x

    Article  Google Scholar 

  • Munaweera, T. I. K., Jayawardana, N. U., Rajaratnam, R., & Dissanayake, N. (2022). Modern plant biotechnology as a strategy in addressing climate change and attaining food security. Agriculture & Food Security, 11, 1–28. https://doi.org/10.1186/s40066-022-00369-2

    Article  Google Scholar 

  • Muthurajan, R., Ramanathan, V., Bansilal Shillak, A., Madhuri Pralhad, S., Shankarrao, C. N., Rahman, H., Kambale, R., Nallathambi, J., Tamilselvan, S., & Madasamy, P. (2021). Controlled over-expression of AtDREB1A enhances tolerance against drought and salinity in rice. Agronomy, 11, 159. https://doi.org/10.3390/agronomy11010159

    Article  CAS  Google Scholar 

  • Nakabayashi, R., Yonekura-Sakakibara, K., Urano, K., Suzuki, M., Yamada, Y., Nishizawa, T., Matsuda, F., Kojima, M., Sakakibara, H., Shinozaki, K., & Michael, A. J. (2014). Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. The Plant Journal, 77, 367–379. https://doi.org/10.1111/tpj.12388

    Article  CAS  Google Scholar 

  • Naz, R., Sarfraz, A., Anwar, Z., Yasmin, H., Nosheen, A., Keyani, R., & Roberts, T. H. (2021). Combined ability of salicylic acid and spermidine to mitigate the individual and interactive effects of drought and chromium stress in maize (Zea mays L.). Plant Physiology and Biochemistry, 159, 285–300. https://doi.org/10.1016/j.plaphy.2020.12.022

    Article  CAS  Google Scholar 

  • Nazir, F., Fariduddin, Q., & Khan, T. A. (2020). Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress. Chemosphere, 252, 126486. https://doi.org/10.1016/j.chemosphere.2020.126486

    Article  CAS  Google Scholar 

  • Neri, A., Traversari, S., Andreucci, A., Francini, A., & Sebastiani, L. (2021). The role of aquaporin overexpression in the modulation of transcription of heavy metal transporters under cadmium treatment in poplar. Plants, 10, 54. https://doi.org/10.3390/plants10010054

    Article  CAS  Google Scholar 

  • Nie, L. Z., Yu, X. X., Ma, Y. H., Fang, Y. Y., Li, L. M., & Yu, Z. (2018). Enhanced drought and osmotic stress tolerance in transgenic potato plants expressing AtCDPK1, a calcium-dependent protein kinase. Russian Journal of Plant Physiology, 65, 865–873. https://doi.org/10.1134/S1021443718060110

    Article  CAS  Google Scholar 

  • Ning, W., Zhai, H., Yu, J., Liang, S., Yang, X., **ng, X., Huo, J., Pang, T., Yang, Y., & Bai, X. (2017). Overexpression of Glycine soja WRKY20 enhances drought tolerance and improves plant yields under drought stress in transgenic soybean. Molecular Breeding, 37, Article number 19. https://doi.org/10.1007/s11032-016-0614-4

    Article  CAS  Google Scholar 

  • Ogawa, D., Suzuki, Y., Yokoo, T., Katoh, E., Teruya, M., Muramatsu, M., Ma, J. F., Yoshida, Y., Isaji, S., Ogo, Y., & Miyao, M. (2021). Acetic-acid-induced jasmonate signaling in root enhances drought avoidance in rice. Science and Reports, 11, 1–13. https://doi.org/10.1038/s41598-021-85355-7

    Article  CAS  Google Scholar 

  • Oono, Y., Yazawa, T., Kawahara, Y., Kanamori, H., Kobayashi, F., Sasaki, H., Mori, S., Wu, J., Handa, H., Itoh, T., & Matsumoto, T. (2014). Genome-wide transcriptome analysis reveals that cadmium stress signaling controls the expression of genes in drought stress signal pathways in rice. PloS One, 9. https://doi.org/10.1371/journal.pone.0096946

  • Osmolovskaya, N., Dung, V. V., & Kuchaeva, L. (2018). The role of organic acids in heavy metal tolerance in plants. Biological Communications, 63, 9–16. https://doi.org/10.21638/spbu03.2018.103

    Article  Google Scholar 

  • Pan, W., Shen, J., Zheng, Z., Yan, X., Shou, J., Wang, W., Jiang, L., & Pan, J. (2018). Overexpression of the Tibetan Plateau annual wild barley (Hordeum spontaneum) HsCIPKs enhances rice tolerance to heavy metal toxicities and other abiotic stresses. Rice, 11, 1–13. https://doi.org/10.1186/s12284-018-0242-1

    Article  Google Scholar 

  • Pandey, P., Srivastava, R. K., & Dubey, R. S. (2013). Salicylic acid alleviates aluminum toxicity in rice seedlings better than magnesium and calcium by reducing aluminum uptake, suppressing oxidative damage and increasing antioxidative defense. Ecotoxicology, 22, 656–670. https://doi.org/10.1007/s10646-013-1058-9

    Article  CAS  Google Scholar 

  • Pandey, P., Irulappan, V., Bagavathiannan, M. V., & Senthil-Kumar, M. (2017). Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Frontiers in Plant Science, 8, 537. https://doi.org/10.3389/fpls.2017.00537

    Article  Google Scholar 

  • Park, W., Feng, Y., Kim, H., Suh, M. C., & Ahn, S. J. (2015). Changes in fatty acid content and composition between wild type and CsHMA3 overexpressing Camelina sativa under heavy-metal stress. Plant Cell Reports, 34, 1489–1498. https://doi.org/10.1007/s00299-015-1801-1

    Article  CAS  Google Scholar 

  • Park, J. S., Kim, H. J., Cho, H. S., Jung, H. W., Cha, J. Y., Yun, D. J., Oh, S. W., & Chung, Y. S. (2019). Overexpression of AtYUCCA6 in soybean crop results in reduced ROS production and increased drought tolerance. Plant Biotechnology Reports, 13, 161–168. https://doi.org/10.1007/s11816-019-00527-2

    Article  Google Scholar 

  • Patankar, H. V., Al-Harrasi, I., Al Kharusi, L., Jana, G. A., Al-Yahyai, R., Sunkar, R., & Yaish, M. W. (2019). Overexpression of a Metallothionein 2A gene from date palm confers abiotic stress tolerance to yeast and Arabidopsis thaliana. International Journal of Molecular Sciences, 20, 2871. https://doi.org/10.3390/ijms20122871

    Article  CAS  Google Scholar 

  • Peng, X., Li, J., Sun, L., Gao, Y., Cao, M., & Luo, J. (2022). Impacts of water deficit and post-drought irrigation on transpiration rate, root activity, and biomass yield of Festuca arundinacea during phytoextraction. Chemosphere, 294, 133842. https://doi.org/10.1016/j.chemosphere.2022.133842

    Article  CAS  Google Scholar 

  • Perlikowski, D., & Kosmala, A. (2020). Mechanisms of drought resistance in introgression forms of Lolium multiflorum/Festuca arundinacea. Biologia Plantarum, 64, 497–503. https://doi.org/10.32615/bp.2020.076

    Article  Google Scholar 

  • Pham, T. T. N., Nguyen, H. Q., Nguyen, T. N. L., Dao, X. T., Sy, D. T., Van Son, L., & Hoang Mau, C. (2020). Overexpression of the’GmDREB2’gene increases proline accumulation and tolerance to drought stress in soybean plants. Australian Journal of Crop Science, 14, 495–5034. https://doi.org/10.21475/ajcs.20.14.03.p2173

    Article  CAS  Google Scholar 

  • Pogrzeba, M., Rusinowski, S., Sitko, K., Krzyżak, J., Skalska, A., Małkowski, E., Ciszek, D., Werle, S., McCalmont, J. P., Mos, M., & Kalaji, H. M. (2017). Relationships between soil parameters and physiological status of Miscanthus x giganteus cultivated on soil contaminated with trace elements under NPK fertilisation vs. microbial inoculation. Environmental Pollution, 225, 163–174. https://doi.org/10.1016/j.envpol.2017.03.058

    Article  CAS  Google Scholar 

  • Pomponi, M., Censi, V., Di Girolamo, V., De Paolis, A., Di Toppi, L. S., Aromolo, R., Costantino, P., & Cardarelli, M. (2006). Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd2+ tolerance and accumulation but not translocation to the shoot. Planta, 223, 180–190. https://doi.org/10.1007/s00425-005-0073-3

    Article  CAS  Google Scholar 

  • Popova, L. P., Maslenkova, L. T., Ivanova, A., & Stoinova, Z. (2012). Role of salicylic acid in alleviating heavy metal stress. In P. Ahmad & M. N. V. Prasad (Eds.), Environmental adaptations and stress tolerance of plants in the era of climate change (pp. 447–466). Springer. https://doi.org/10.1007/978-1-4614-0815-4_21

    Chapter  Google Scholar 

  • Prabhavathi, V. R., & Rajam, M. V. (2007). Polyamine accumulation in transgenic eggplant enhances tolerance to multiple abiotic stresses and fungal resistance. Plant Biotechnology, 24, 273–282. https://doi.org/10.5511/plantbiotechnology.24.273

    Article  CAS  Google Scholar 

  • Qiao, L., Jiang, P., Tang, Y., Pan, L., Ji, H., Zhou, W., Zhu, H., Sui, J., Jiang, D., & Wang, J. (2021). Characterization of AhLea-3 and its enhancement of salt tolerance in transgenic peanut plants. Electronic Journal of Biotechnology, 49, 42–49. https://doi.org/10.1016/j.ejbt.2020.10.006

    Article  CAS  Google Scholar 

  • Rajwanshi, R., Kumar, D., Yusuf, M. A., DebRoy, S., & Sarin, N. B. (2016). Stress-inducible overexpression of glyoxalase I is preferable to its constitutive overexpression for abiotic stress tolerance in transgenic Brassica juncea. Molecular Breeding, 36, 1–15. https://doi.org/10.1007/s11032-016-0495-6

    Article  CAS  Google Scholar 

  • Ren, C., Qi, Y., Huang, G., Yao, S., You, J., & Hu, H. (2020). Contributions of root cell wall polysaccharides to Cu sequestration in castor (Ricinus communis L.) exposed to different Cu stresses. Journal of Environmental Sciences, 88, 209–216. https://doi.org/10.1016/j.jes.2019.08.012

    Article  CAS  Google Scholar 

  • Roychoudhury, A. (2021). Involvement of heat shock proteins in plant tolerance against metal/metalloid toxicity. International Journal of Multidisciplinary Research and Growth Evaluation, 2, 255–261.

    Google Scholar 

  • Rusinowski, S., Krzyżak, J., Clifton-Brown, J., Jensen, E., Mos, M., Webster, R., Sitko, K., & Pogrzeba, M. (2019). New Miscanthus hybrids cultivated at a Polish metal-contaminated site demonstrate high stomatal regulation and reduced shoot Pb and Cd concentrations. Environmental Pollution, 252, 1377–1387. https://doi.org/10.1016/j.envpol.2019.06.062

    Article  CAS  Google Scholar 

  • Sadok, W., & Schoppach, R. (2019). Potential involvement of root auxins in drought tolerance by modulating nocturnal and daytime water use in wheat. Annals of Botany, 124, 969–978. https://doi.org/10.1093/aob/mcz023

    Article  CAS  Google Scholar 

  • Samuilov, S., Lang, F., Djukic, M., Djunisijevic-Bojovic, D., & Rennenberg, H. (2016). Lead uptake increases drought tolerance of wild type and transgenic poplar (Populus tremula x P. alba) overexpressing gsh 1. Environmental Pollution, 216, 773–785. https://doi.org/10.1016/j.envpol.2016.06.047

    Article  CAS  Google Scholar 

  • Sarkar, T., Thankappan, R., Mishra, G. P., & Nawade, B. D. (2019). Advances in the development and use of DREB for improved abiotic stress tolerance in transgenic crop plants. Physiology and Molecular Biology of Plants, 25, 1323–1334. https://doi.org/10.1007/s12298-019-00711-2

    Article  CAS  Google Scholar 

  • Sato, Y., & Yokoya, S. (2008). Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17. 7. Plant Cell Reports, 27, 329–334. https://doi.org/10.1007/s00299-007-0470-0

    Article  CAS  Google Scholar 

  • Saxena, I., & Shekhawat, G. S. (2013). Nitric oxide (NO) in alleviation of heavy metal induced phytotoxicity and its role in protein nitration. Nitric Oxide, 32, 13–20. https://doi.org/10.1016/j.niox.2013.03.004

    Article  CAS  Google Scholar 

  • Shao, Y., Zhang, X., van Nocker, S., Gong, X., & Ma, F. (2019). Overexpression of a protein kinase gene MpSnRK2. 10 from Malus prunifolia confers tolerance to drought stress in transgenic Arabidopsis thaliana and apple. Gene, 692, 26–34. https://doi.org/10.1016/j.gene.2018.12.070

    Article  CAS  Google Scholar 

  • Sharma, P., & Dubey, R. S. (2005). Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regulation, 46, 209–221. https://doi.org/10.1007/s10725-005-0002-2

    Article  CAS  Google Scholar 

  • Sharma, P., & Dubey, R. S. (2009). Metal toxicity in plants: uptake of metals, metabolic alterations and tolerance mechanisms. Advances in Plant Physiology, 11, 53.

    Google Scholar 

  • Sharma, P., & Dubey, R. S. (2011). Abiotic stress-induced metabolic alterations in crop plants: strategies for improving stress tolerance. In R. P. Sinha, N. K. Sharma, & A. K. Rai (Eds.), Advances in life sciences (pp. 1–54). IK International Publishing House Pvt Ltd.

    Google Scholar 

  • Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, 217037. https://doi.org/10.1155/2012/217037

    Article  CAS  Google Scholar 

  • Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2014). Reactive oxygen species generation, hazards and defense mechanisms in plants under environmental (abiotic and biotic) stress conditions. In M. Pessarakli (Ed.), Handbook of plant and crop physiology (3rd ed., pp. 509–547). CRC Press.

    Google Scholar 

  • Sharma, S., Tiwari, S., Hasan, A., Saxena, V., & Pandey, L. M. (2018). Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils. 3 Biotech, 8, 1–18. https://doi.org/10.1007/s13205-018-1237-8

    Article  Google Scholar 

  • Sharma, P., Jha, A. B., Bauddh, K., Korstad, J., & Dubey, R. S. (2021). Efficient utilization of plant biomass after harvesting the phytoremediator plants. In K. Bauddh, J. Korstad, & P. Sharma (Eds.), Phytorestoration of abandoned mining and oil drilling sites (pp. 57–84). Elsevier. https://doi.org/10.1016/B978-0-12-821200-4.00003-0

    Chapter  Google Scholar 

  • Sharma, P., Jha, A. B., Verma, S., & Dubey, R. S. (2006). Induction of ascorbate and guaiacol specific peroxidases in metal and water deficit induced oxidative stress in rice seedlings. Physiology and Molecular Biology of Plants, 12, 81–90.

  • Shavrukov, Y., Kurishbayev, A., Jatayev, S., Shvidchenko, V., Zotova, L., Koekemoer, F., de Groot, S., Soole, K., & Langridge, P. (2017). Early flowering as a drought escape mechanism in plants: How can it aid wheat production? Frontiers in Plant Science, 8, 1950. https://doi.org/10.3389/fpls.2017.01950

    Article  Google Scholar 

  • Shi, G., **a, S., Ye, J., Huang, Y., Liu, C., & Zhang, Z. (2015). PEG-simulated drought stress decreases cadmium accumulation in castor bean by altering root morphology. Environmental and Experimental Botany, 111, 127–134. https://doi.org/10.1016/j.envexpbot.2014.11.008

    Article  CAS  Google Scholar 

  • Shivaraj, S. M., Sharma, Y., Chaudhary, J., Rajora, N., Sharma, S., Thakral, V., ... Deshmukh, R. (2021). Dynamic role of aquaporin transport system under drought stress in plants. Environmental and Experimental Botany, 184, 104367. https://doi.org/10.1016/j.envexpbot.2020.104367

  • Sidhu, G. P. S., Bali, A. S., & Bhardwaj, R. (2019). Role of organic acids in mitigating cadmium toxicity in plants. In M. Hasanuzzaman, M. N. V. Prasad, & K. Nahar (Eds.), Cadmium tolerance in plants: Agronomic, molecular, signaling and omics approaches (pp. 255–279). Academic Press. https://doi.org/10.1016/B978-0-12-815794-7.00010-2

    Chapter  Google Scholar 

  • Singh, R., Jha, A. B., Misra, A. N., & Sharma, P. (2019). Adaption mechanisms in plants under heavy metal stress conditions during phytoremediation. In V. Pandey & K. Bauddh (Eds.), Phytomanagement of polluted sites (pp. 329–360). Elsevier. https://doi.org/10.1016/B978-0-12-813912-7.00013-2

    Chapter  Google Scholar 

  • Singh, R., Misra, A. N., & Sharma, P. (2021a). Differential responses of thiol metabolism and genes involved in arsenic detoxification in tolerant and sensitive genotypes of bioenergy crop Ricinus communis. Protoplasma, 258, 391–401. https://doi.org/10.1007/s00709-020-01577-y

    Article  CAS  Google Scholar 

  • Singh, R., Misra, A. N., & Sharma, P. (2021b). Effect of arsenate toxicity on antioxidant enzymes and expression of nicotianamine synthase in contrasting genotypes of bioenergy crop Ricinus communis. Environmental Science and Pollution Research, 28(24), 31421–31430. https://doi.org/10.1007/s11356-021-12701-7

    Article  CAS  Google Scholar 

  • Singh, R., Misra, A. N., & Sharma, P. (2021c). Safe, efficient, and economically beneficial remediation of arsenic-contaminated soil: possible strategies for increasing arsenic tolerance and accumulation in non-edible economically important native plants. Environmental Science and Pollution Research, 28(45), 64113–64129. https://doi.org/10.1007/s11356-021-14507-z

    Article  CAS  Google Scholar 

  • Sinha, R., Singh, A. K., Bauddh, K., Sharma, T. R., & Sharma, P. (2021). Phytomining: a sustainable approach for recovery and extraction of valuable metals. In K. Bauddh, J. Korstad, & P. Sharma (Eds.), Phytorestoration of abandoned mining and oil drilling sites (pp. 487–506). Elsevier. https://doi.org/10.1016/B978-0-12-821200-4.00013-3

    Chapter  Google Scholar 

  • Soni, S., Jha, A. B., Dubey, R. S., & Sharma, P. (2023a). Mitigating cadmium accumulation and toxicity in plants: the promising role of nanoparticles. Science of the Total Environment, 912, 168826. https://doi.org/10.1016/j.scitotenv.2023.168826

    Article  CAS  Google Scholar 

  • Soni, S., Jha, A. B., Dubey, R. S., & Sharma, P. (2023b). Alleviation of chromium stress in plants using metal and metal oxide nanoparticles. Environmental Science and Pollution Research, 30(35), 83180–83197. https://doi.org/10.1007/s11356-023-28161-0

    Article  CAS  Google Scholar 

  • Srivastava, R. K., Pandey, P., Rajpoot, R., Gautam, R. A., & A, Dubey RS,. (2014). Exogenous application of calcium and silica alleviates cadmium toxicity by suppressing oxidative damage in rice seedlings. Protoplasma, 252, 959–975. https://doi.org/10.1007/s00709-014-0731-z

    Article  CAS  Google Scholar 

  • Srivastava, D., Verma, G., Chauhan, A. S., Pande, V., & Chakrabarti, D. (2019). Rice (Oryza sativa L.) tau class glutathione S-transferase (OsGSTU30) overexpression in Arabidopsis thaliana modulates a regulatory network leading to heavy metal and drought stress tolerance. Metallomics, 11, 375–389. https://doi.org/10.1039/C8MT00204E

    Article  CAS  Google Scholar 

  • Talbi, S., Rojas, J. A., Sahrawy, M., Rodríguez-Serrano, M., Cárdenas, K. E., Debouba, M., & Sandalio, L. M. (2020). Effect of drought on growth, photosynthesis and total antioxidant capacity of the saharan plant Oudeneya africana. Environmental and Experimental Botany, 176, 104099. https://doi.org/10.1016/j.envexpbot.2020.104099

    Article  CAS  Google Scholar 

  • Tang, N., Zhang, H., Li, X., **ao, J., & **ong, L. (2012). Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. Plant Physiology, 158, 1755–1768. https://doi.org/10.1104/pp.111.190389

    Article  CAS  Google Scholar 

  • Tang, X., Song, Y., He, X., & Yi, L. (2019a). Enhancing phytoremediation efficiency using regulated deficit irrigation. Polish Journal of Environmental Studies, 28, 2399–2405. https://doi.org/10.15244/pjoes/91043

    Article  Google Scholar 

  • Tang, Y., Bao, X., Zhi, Y., Wu, Q., Guo, Y., Yin, X., Zeng, L., Li, J., Zhang, J., He, W., & Liu, W. (2019b). Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice. Frontiers in Plant Science, 10, 168. https://doi.org/10.3389/fpls.2019.00168

    Article  Google Scholar 

  • Tashakorizadeh, M., Golkar, P., Vahabi, M. R., & Ghorbanpour, M. (2023). Physiological and biochemical mechanisms of grain yield loss in fumitory (Fumaria parviflora Lam.) exposed to copper and drought stress. Scientific Reports, 13, 17934. https://doi.org/10.1038/s41598-023-45103-5

    Article  CAS  Google Scholar 

  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. In A. Luch (Ed.), Molecular, clinical and environmental toxicology (Vol. 101, pp. 133–164). Springer. https://doi.org/10.1007/978-3-7643-8340-4_6

    Chapter  Google Scholar 

  • Thirumalaikumar, V. P., Devkar, V., Mehterov, N., Ali, S., Ozgur, R., Turkan, I., Mueller-Roeber, B., & Balazadeh, S. (2018). NAC transcription factor JUNGBRUNNEN 1 enhances drought tolerance in tomato. Plant Biotechnology Journal, 16, 354–366. https://doi.org/10.1111/pbi.12776

    Article  CAS  Google Scholar 

  • Tiwari, P., Indoliya, Y., Chauhan, A. S., Pande, V., & Chakrabarty, D. (2020). Over-expression of rice R1-type MYB transcription factor confers different abiotic stress tolerance in transgenic Arabidopsis. Ecotoxicology and Environmental Safety, 206, 111361. https://doi.org/10.1016/j.ecoenv.2020.111361

    Article  CAS  Google Scholar 

  • Tiwari, J., Chakravarty, P., Sharma, P., Sinha, R., Kumar, M., & Bauddh, K. (2021). Phytoremediation: A sustainable method for cleaning up the contaminated sites. In K. Bauddh, J. Korstad, & P. Sharma (Eds.), Phytorestoration of abandoned mining and oil drilling sites (pp. 3–32). Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-821200-4.00019-4

    Chapter  Google Scholar 

  • Torasa, S., Boonyarat, P., Phongdara, A., & Buapet, P. (2019). Tolerance mechanisms to copper and zinc excess in Rhizophora mucronata Lam. seedlings involve cell wall sequestration and limited translocation. Bulletin of Environment Contamination and Toxicology, 102, 573–580. https://doi.org/10.1007/s00128-019-02589-y

    Article  CAS  Google Scholar 

  • Tuver, G. Y., Ekinci, M., & Yildirim, E. (2022). Morphological, physiological and biochemical responses to combined cadmium and drought stress in radish (Raphanus sativus L.). Rendiconti Lincei Scienze Fisiche e Naturali, 33, 419–429. https://doi.org/10.1007/s12210-022-01062-z

    Article  Google Scholar 

  • Ünyayar, S., Keleş, Y., & Çekiç, F. Ö. (2005). The antioxidative response of two tomato species with different drought tolerances as a result of drought and cadmium stress combinations. Plant, Soil and Environment, 51, 57–64. https://doi.org/10.17221/3556-PSE

    Article  Google Scholar 

  • Vicente-Serrano, S. M., Quiring, S. M., Pena-Gallardo, M., Yuan, S., & Dominguez-Castro, F. (2020). A review of environmental droughts: Increased risk under global warming? Earth-Science Reviews, 201, 102953. https://doi.org/10.1016/j.earscirev.2019.102953

    Article  Google Scholar 

  • Viehweger, K. (2014). How plants cope with heavy metals. Botanical Studies, 55, 1–12. https://doi.org/10.1186/1999-3110-55-35

    Article  CAS  Google Scholar 

  • Voiniciuc, C., Pauly, M., & Usadel, B. (2018). Monitoring polysaccharide dynamics in the plant cell wall. Plant Physiology, 76, 2590–2600. https://doi.org/10.3390/plants10030561

    Article  CAS  Google Scholar 

  • Wang, B. Q., Zhang, Q. F., Liu, J. H., & Li, G. H. (2011). Overexpression of PtADC confers enhanced dehydration and drought tolerance in transgenic tobacco and tomato: effect on ROS elimination. Biochemical and Biophysical Research Communications, 413, 10–16. https://doi.org/10.1016/j.bbrc.2011.08.015

    Article  CAS  Google Scholar 

  • Wang, J. W., Li, Y., Zhang, Y. X., & Chai, T. Y. (2013). Molecular cloning and characterization of a Brassica juncea yellow stripe-like gene, BjYSL7, whose overexpression increases heavy metal tolerance of tobacco. Plant Cell Reports, 32, 651–662. https://doi.org/10.1007/s00299-013-1398-1

    Article  CAS  Google Scholar 

  • Wang, L., Su, H., Han, L., Wang, C., Sun, Y., & Liu, F. (2014). Differential expression profiles of poplar MAP kinase kinases in response to abiotic stresses and plant hormones, and overexpression of PtMKK4 improves the drought tolerance of poplar. Gene, 545, 141–148. https://doi.org/10.1016/j.gene.2014.04.058

    Article  CAS  Google Scholar 

  • Wang, L., Zhao, R., Li, R., Yu, W., Yang, M., Sheng, J., & Shen, L. (2018). Enhanced drought tolerance in tomato plants by overexpression of SlMAPK1. Plant Cell, Tissue and Organ Culture, 133, 27–38. https://doi.org/10.1007/s11240-017-1358-5

    Article  CAS  Google Scholar 

  • Wang, X., Gao, F., Bing, J., Sun, W., Feng, X., Ma, X., Zhou, Y., & Zhang, G. (2019). Overexpression of the Jojoba aquaporin gene, ScPIP1, enhances drought and salt tolerance in transgenic Arabidopsis. International Journal of Molecular Sciences, 20, 153. https://doi.org/10.3390/ijms20010153

    Article  CAS  Google Scholar 

  • Wang, Z., Zhang, Q., Qin, J., **ao, G., Zhu, S., & Hu, T. (2021). OsLEA1a overexpression enhances tolerance to diverse abiotic stresses by inhibiting cell membrane damage and enhancing ROS scavenging capacity in transgenic rice. Functional Plant Biology, 48(9), 860–870. https://doi.org/10.1071/FP20231

    Article  CAS  Google Scholar 

  • Wang, S., Liu, Y., Hao, X., Wang, Z., Chen, Y., Qu, Y., ... Shen, Y. (2023). AnWRKY29 from the desert xerophytic evergreen Ammopiptanthus nanus improves drought tolerance through osmoregulation in transgenic plants. Plant Science, 336, 111851. https://doi.org/10.1016/j.plantsci.2023.111851

  • Wei, W., Liang, D. W., Bian, X. H., Shen, M., **ao, J. H., Zhang, W. K., Ma, B., Lin, Q., Lv, J., Chen, X., & Chen, S. Y. (2019). GmWRKY54 improves drought tolerance through activating genes in abscisic acid and Ca2+ signaling pathways in transgenic soybean. The Plant Journal, 100, 384–398. https://doi.org/10.1111/tpj.14449

    Article  CAS  Google Scholar 

  • **ang, J., Chen, X., Hu, W., **ang, Y., Yan, M., & Wang, J. (2018). Overexpressing heat-shock protein OsHSP50. 2 improves drought tolerance in rice. Plant Cell Reports, 37, 1585–1595. https://doi.org/10.1007/s00299-018-2331-4

    Article  CAS  Google Scholar 

  • **ao, Y., Wu, X., Liu, D., Yao, J., Liang, G., Song, H., Ismail, A. M., Luo, J. S., & Zhang, Z. (2020). Cell wall polysaccharide-mediated cadmium tolerance between two Arabidopsis thaliana ecotypes. Frontiers in Plant Science, 11, 473. https://doi.org/10.3389/fpls.2020.00473

    Article  Google Scholar 

  • **ong, J., Fu, G., Tao, L., & Zhu, C. (2010). Roles of nitric oxide in alleviating heavy metal toxicity in plants. Archives of Biochemistry and Biophysics, 497, 13–20. https://doi.org/10.1016/j.abb.2010.02.014

    Article  CAS  Google Scholar 

  • Xu, J., Zheng, A. Q., **ng, X. J., Chen, L., Fu, X. Y., Peng, R. H., Tian, Y. S., & Yao, Q. H. (2018). Transgenic Arabidopsis plants expressing grape glutathione S-Transferase gene (VvGSTF13) show enhanced tolerance to abiotic stress. Biochemistry, 83, 755–765. https://doi.org/10.1134/S0006297918060135

    Article  CAS  Google Scholar 

  • Xu, W., Tang, W., Wang, C., Ge, L., Sun, J., Qi, X., He, Z., Zhou, Y., Chen, J., Xu, Z., & Ma, Y. Z. (2020a). SiMYB56 confers drought stress tolerance in transgenic rice by regulating lignin biosynthesis and ABA signaling pathway. Frontiers in Plant Science, 11, 785. https://doi.org/10.3389/fpls.2020.00785

    Article  Google Scholar 

  • Xu, Y., Hu, W., Liu, J., Song, S., Hou, X., Jia, C., Li, J., Miao, H., Wang, Z., Tie, W., & Xu, B. (2020b). An aquaporin gene MaPIP2-7 is involved in tolerance to drought, cold and salt stresses in transgenic banana (Musa acuminata L.). Plant Physiology and Biochemistry, 147, 66–76. https://doi.org/10.1016/j.plaphy.2019.12.011

    Article  CAS  Google Scholar 

  • Xu, J., **ng, X. J., Tian, Y. S., Peng, R. H., Xue, Y., Zhao, W., & Yao, Q. H. (2015). Transgenic Arabidopsis plants expressing tomato glutathione S-transferase showed enhanced resistance to salt and drought stress. PloS One, e0136960. https://doi.org/10.1371/journal.pone.0136960

  • Yang, Z., Wu, Y., Li, Y., Ling, H. Q., & Chu, C. (2009). OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Molecular Biology, 70, 219–229. https://doi.org/10.1007/s11103-009-9466-1

    Article  CAS  Google Scholar 

  • Yang, W. J., Du, Y. T., Zhou, Y. B., Chen, J., Xu, Z. S., Ma, Y. Z., Chen, M., & Min, D. H. (2019). Overexpression of TaCOMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis. International Journal of Molecular Sciences, 20, 652. https://doi.org/10.3390/ijms20030652

    Article  CAS  Google Scholar 

  • Yang, J., Zhang, G., An, J., Li, Q., Chen, Y., Zhao, X., Wu, J., Wang, Y., Hao, Q., Wang, W., & Wang, W. (2020a). Expansin gene TaEXPA2 positively regulates drought tolerance in transgenic wheat (Triticum aestivum L.). Plant Science, 298, 110596. https://doi.org/10.1016/j.plantsci.2020.110596

    Article  CAS  Google Scholar 

  • Yang, Y., Yu, T. F., Ma, J., Chen, J., Zhou, Y. B., Chen, M., Ma, Y. Z., Wei, W. L., & Xu, Z. S. (2020b). The soybean bZIP transcription factor gene GmbZIP2 confers drought and salt resistances in transgenic plants. International Journal of Molecular Sciences, 21, 670. https://doi.org/10.3390/ijms21020670

    Article  CAS  Google Scholar 

  • Yang, S., Sun, L., Sun, Y., Song, K., Qin, Q., Zhu, Z., & Xue, Y. (2023a). Towards an integrated health risk assessment framework of soil heavy metals pollution: theoretical basis, conceptual model, and perspectives. Environmental Pollution, 316, 120596. https://doi.org/10.1016/j.envpol.2022.120596

    Article  CAS  Google Scholar 

  • Yang, Z., Wu, H. T., Yang, H., Chen, W. D, Liu, J. L., Yang, F., ... Chen, K. M. (2023b). Overexpression of Sedum SpHMA2, SpHMA3 and SpNramp6 in Brassica napus increases multiple heavy metals accumulation for phytoextraction. Journal of Hazardous Materials, 44, 130970. https://doi.org/10.1016/j.jhazmat.2023.130970

  • Yao, P. F., Li, C. L., Zhao, X. R., Li, M. F., Zhao, H. X., Guo, J. Y., Cai, Y., Chen, H., & Wu, Q. (2017). Overexpression of a tartary buckwheat gene, FtbHLH3, enhances drought/oxidative stress tolerance in transgenic Arabidopsis. Frontiers in Plant Science, 8, 625. https://doi.org/10.3389/fpls.2017.00625

    Article  Google Scholar 

  • Yeo, E. T., Kwon, H. B., Han, S. E., Lee, J. T., Ryu, J. C., & Byu, M. O. (2000). Genetic engineering of drought resistant potato plants by introduction of the trehalose-6-phosphate synthase (TPS1) gene from Saccharomyces cerevisiae. Molecules and Cells, 10, 263–268. https://doi.org/10.1016/S1016-8478(23)17473-5

    Article  CAS  Google Scholar 

  • Yoshida, T., & Ferni, A. R. (2024). Hormonal regulation of plant primary metabolism under drought. Journal of Experimental Botany, 75(6), 1714–1725. https://doi.org/10.1093/jxb/erad358

    Article  Google Scholar 

  • Yu, J., Ge, H., Wang, X., Tang, R., Wang, Y., Zhao, F., Lan, W., Luan, S., & Yang, L. (2017). Overexpression of pyrabactin resistance-like abscisic acid receptors enhances drought, osmotic, and cold tolerance in transgenic poplars. Frontiers in Plant Science, 8, 1752. https://doi.org/10.3389/fpls.2017.01752

    Article  Google Scholar 

  • Yu, Y., Ni, Z., Wang, Y., Wan, H., Hu, Z., Jiang, Q., Sun, X., & Zhang, H. (2019). Overexpression of soybean miR169c confers increased drought stress sensitivity in transgenic Arabidopsis thaliana. Plant Science, 285, 68–78. https://doi.org/10.1016/j.plantsci.2019.05.003

    Article  CAS  Google Scholar 

  • Yu, Y., Song, T., Wang, Y., Zhang, M., Li, N., Yu, M., ... Zhang, X. (2023a). The wheat WRKY transcription factor TaWRKY1–2D confers drought resistance in transgenic Arabidopsis and wheat (Triticum aestivum L.). International Journal of Biological Macromolecules, 226:1203–1217. https://doi.org/10.1016/j.ijbiomac.2022.11.234

  • Yu, X., Yang, Z., Xu, Y., Wang, Z., Fan, C., Zeng, X., ... Gao, S. (2023b). Effect of chromium stress on metal accumulation and cell wall fractions in Cosmos bipinnatus. Chemosphere, 315, 137677. https://doi.org/10.1016/j.chemosphere.2022.137677

  • Yusuf, M. A., Kumar, D., Rajwanshi, R., Strasser, R. J., Tsimilli-Michael, M., & Sarin, N. B. (2010). Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochimica Et Biophysica Acta, Bioenergetics, 1797, 1428–1438. https://doi.org/10.1016/j.bbabio.2010.02.002

    Article  CAS  Google Scholar 

  • Zhang, Y., Wang, Z., Chai, T., Wen, Z., & Zhang, H. (2008). Indian mustard aquaporin improves drought, heavy-metal resistance in tobacco. Molecular Biotechnology, 40, 280–292. https://doi.org/10.1007/s12033-008-9084-1

    Article  CAS  Google Scholar 

  • Zhang, D. Y., Yang, H. L., Li, X. S., Li, H. Y., & Wang, Y. C. (2014a). Overexpression of Tamarix albiflonum TaMnSOD increases drought tolerance in transgenic cotton. Molecular Breeding, 34, 1–11. https://doi.org/10.1007/s11032-014-0015-5

    Article  CAS  Google Scholar 

  • Zhang, X., Tang, W., Liu, J., & Liu, Y. (2014b). Co-expression of rice OsP5CS1 and OsP5CS2 genes in transgenic tobacco resulted in elevated proline biosynthesis and enhanced abiotic stress tolerance. Chinese Journal of Applied and Environmental Biology, 20, 717–722.

    Google Scholar 

  • Zhang, J., Martinoia, E., & Lee, Y. (2018). Vacuolar transporters for cadmium and arsenic in plants and their applications in phytoremediation and crop development. Plant and Cell Physiology, 59, 1317–1325. https://doi.org/10.1093/pcp/pcy006

    Article  CAS  Google Scholar 

  • Zhang, H., Liu, D., Yang, B., Liu, W. Z., Mu, B., Song, H., Chen, B., Li, Y., Ren, D., Deng, H., & Jiang, Y. Q. (2020a). Arabidopsis CPK6 positively regulates ABA signaling and drought tolerance through phosphorylating ABA-responsive element-binding factors. Journal of Experimental Botany, 71, 188–203. https://doi.org/10.1093/jxb/erz432

    Article  CAS  Google Scholar 

  • Zhang, Y., Wan, S., Liu, X., He, J., Cheng, L., Duan, M., Liu, H., Wang, W., & Yu, Y. (2020b). Overexpression of CsSnRK2. 5 increases tolerance to drought stress in transgenic Arabidopsis. Plant Physiology and Biochemistry, 150, 162–170. https://doi.org/10.1016/j.plaphy.2020.02.035

    Article  CAS  Google Scholar 

  • Zhao, Q., Wang, G., Ji, J., **, C., Wu, W., & Zhao, J. (2014). Over-expression of Arabidopsis thaliana β-carotene hydroxylase (chyB) gene enhances drought tolerance in transgenic tobacco. Journal of Plant Biochemistry and Biotechnology, 23, 190–198. https://doi.org/10.1007/s13562-013-0201-2

    Article  CAS  Google Scholar 

  • Zhao, H., Zhang, Q., Zhang, M., **, Y. K., Jiang, Z. Z., Jiang, N., Wang, Q., Qu, J., Guan, S. Y., & Wang, P. W. (2020). Drought tolerance in high-generation transgenic maize inbred lines overexpressing the betaine aldehyde dehydrogenase gene. Cereal Research Communications, 49, 1–10. https://doi.org/10.1007/s42976-020-00093-2

    Article  CAS  Google Scholar 

  • Zheng, S., Liu, S., Feng, J., Wang, W., Wang, Y., Yu, Q., Liao, Y., Mo, Y., Xu, Z., Li, L., & Gao, X. (2021). Overexpression of a stress response membrane protein gene OsSMP1 enhances rice tolerance to salt, cold and heavy metal stress. Environmental and Experimental Botany, 182, 104327. https://doi.org/10.1016/j.envexpbot.2020.104327

    Article  CAS  Google Scholar 

  • Zhou, M., Li, D., Li, Z., Hu, Q., Yang, C., Zhu, L., & Luo, H. (2013). Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic cree** bentgrass. Plant Physiology, 161, 1375–1391. https://doi.org/10.1104/pp.112.208702

    Article  CAS  Google Scholar 

  • Zhou, Y., Chen, M., Guo, J., Wang, Y., Min, D., Jiang, Q., Ji, H., Huang, C., Wei, W., Xu, H., & Chen, X. (2020). Overexpression of soybean DREB1 enhances drought stress tolerance of transgenic wheat in the field. Journal of Experimental Botany, 71, 1842–1857. https://doi.org/10.1093/jxb/erz569

    Article  CAS  Google Scholar 

  • Zhou, W., Huang, D., Chen, S., Du, L., Wang, G., Li, R., & Xu, W. (2023). Modified nano zero-valent iron reduce toxicity of polystyrene microplastics to ryegrass (Lolium Perenne L.). Chemosphere, 337, 139152. https://doi.org/10.1016/j.chemosphere.2023.139152

    Article  CAS  Google Scholar 

  • Zhou, S., Hu, W., Deng, X., Ma, Z., Chen, L., Huang, C., Wang, C., Wang, J., He, Y., Yang, G., He, G. (2012). Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco. PloS One, e52439. https://doi.org/10.1371/journal.pone.0052439

  • Zhu, M. D., Zhang, M., Gao, D. J., Zhou, K., Tang, S. J., Zhou, B., & Lv, Y. M. (2020). Rice OsHSFA3 gene improves drought tolerance by modulating polyamine biosynthesis depending on abscisic acid and ROS levels. International Journal of Molecular Sciences, 21, 1857. https://doi.org/10.3390/ijms21051857

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their gratitude to the Central University of Gujarat, Gandhinagar, India, for providing the necessary facilities.

Funding

This work did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallavi Sharma.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Jha, A.B. & Dubey, R.S. Enhancing Phytoremediation Efficacy in Plants Cultivated in Heavy Metal-Contaminated Soil Under Drought Stress: Understanding Plant Responses and Genetic Engineering Strategies. Water Air Soil Pollut 235, 451 (2024). https://doi.org/10.1007/s11270-024-07239-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-07239-6

Keywords

Navigation