Log in

A Study of Controlling of Soil Ammonia Volatilization by Bacillus amyloliquefaciens and Its Mechanism

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Ammonia volatilization is one of the forms of nitrogen loss. In alkaline soil of northern China, four treatment methods were designed: urea add viable Bacillus amyloliquefaciens biofertilizer (UB), urea add nonviable Bacillus amyloliquefaciens biofertilizer, urea add sweet potato starch wastewater, urea (U). The purpose of this study was to understand the effect of Bacillus amyloliquefaciens on ammonia volatilization, and analyze the control mechanism of ammonia volatilization and the effect on soil microbial community. The results showed that compared with U treatment, UB treatment reduced ammonia volatilization by 20%, enhanced nitrogen absorption of sorghum, and promoted the growth of sorghum (257.59%). At the peak of ammonia volatilization rate (7–14 days), the pH value of UB treatment decreased by 0.11. The soil ammonia nitrogen content decreased by 69.18 mg/kg, indicating that soil nitrification was enhanced. The difference of AOB abundance among different treatments was corresponding to the change of NO3–N and NH4+–N contents in soil. The abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) increased after fertilization. Compared with U treatment, UB treatment increased the copy number of AOA and AOB by 2.35 × 107 and 5.12 × 105 g−1 soil, respectively. Soil microbial community results showed that under UB treatment at the phylum level, the proportion of Proteobacteria (43.67%) and Actinobacteria (25.91%) was the highest. Firmicutes and Gemmatimonadetes increased (6.20% and 2.47%). At the class level, Gammaproteobacteria (27.55%), Acidimicrobiia (17.42%), and Alphaproteobacteria (12.66%) were the highest. The proportion of Acidimicrobiia and Alphaproteobacteria decreased (9.31% and 2.24%), while the proportion of Gammaproteobacteria and Bacilli increased (14.61% and 5.19%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data will be made available on reasonable request.

References

  • Akiyama, H., McTaggart, I. P., Ball, B. C., & Scott, A. (2004). N2O, NO, and NH3 emission from soil after the application of organic fertilizers, urea and water. Water, Air, and Soil Pollution, 156(1), 113–129.

    Article  CAS  Google Scholar 

  • Aksoy, T., Cetin, M., Cabuk, S. N., Senyel Kurkcuoglu, M. A, Bilge Ozturk, G., & Cabuk, A. (2022). Impacts of wind turbines on vegetation and soil cover: a case study of Urla, Cesme, and Karaburun Peninsulas, Turkey. Clean Technologies and Environmental Policy, 1–18.

  • Assembly, U. G. (2012). High-level meeting on addressing desertification, land degradation and drought in the context of sustainable development and poverty eradication. A/65/861.

  • Bashan, Y., de-Bashan, L. E., Prabhu, S. R., & Hernandez, J. P. (2014). Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013). Plant and Soil, 378(1–2), 1–33.

    Article  CAS  Google Scholar 

  • Bouma, J. (2016). Hydropedology and the societal challenge of realizing the 2015 United Nations Sustainable Development Goals. Vadose Zone Journal, 15(12), 1–7.

    Article  Google Scholar 

  • Cabrera, M. L., Kissel, D. E., Vaio, N., Craig, J. R., Rema, J. A., & Morris, L. A. (2005). Loblolly pine needles retain urea fertilizer that can be lost as ammonia. Soil Science Society of America Journal, 69(5), 1525–1531.

    Article  CAS  Google Scholar 

  • Cetin, M., Aljama, A. M. O., Alrabiti, O. B. M., Adiguzel, F., Sevik, H., & Zeren Cetin, I. (2022). Determination and map** of regional change of Pb and Cr pollution in Ankara city center. Water, Air, and Soil Pollution, 233(5), 1–10.

    Article  Google Scholar 

  • Cetin, M., Aljama, A. M. O., Alrabiti, O. B. M., Adiguzel, F., Sevik, H., & Zeren Cetin, I. (2022). Using topsoil analysis to determine and map changes in Ni Co pollution. Water, Air, and Soil Pollution, 233(8), 1–11.

    Article  Google Scholar 

  • Cicek, N., Erdogan, M., Yucedag, C., & Cetin, M. (2022). Improving the detrimental aspects of salinity in salinized soils of arid and semi-arid areas for effects of vermicompost leachate on salt stress in seedlings. Water, Air, and Soil Pollution, 233(6), 1–9.

    Article  Google Scholar 

  • Clay, D. E., Malzer, G. L., & Anderson, J. L. (1990). Ammonia volatilization from urea as influenced by soil-temperature, soil-water content, and nitrification and hydrolysis inhibitors. Soil Science Society of America Journal, 54(1), 263–266.

    Article  Google Scholar 

  • Cui, W. Y., He, P. J., Shang, J., Li, Y. Y., Wu, Y. X., & He, Y. Q. (2015). Effects of Bacillus amyloliquefaciens B9601–Y2 on diseases control and growth-promotion of maize. Journal of Maize Science, 23(5), 153–158.

    Google Scholar 

  • de Ridder-Duine, A. S., Kowalchuk, G. A., Klein Gunnewiek, P. J. A., Smant, W., van Veen, J. A., & de Boer, W. (2005). Rhizosphere bacterial community composition in natural stands of Carex arenaria (sand sedge) is determined by bulk soil community composition. Soil Biology and Biochemistry, 37(2), 349–357.

    Article  Google Scholar 

  • Deng, L., Wang, T., Luo, W., He, L., & Liang, Z. (2021). Effects of a compound microbial agent and plants on soil properties, enzyme activities, and bacterial composition of Pisha sandstone. Environmental Science and Pollution Research International, 28(38), 53353–53364.

    Article  CAS  Google Scholar 

  • Dong, Y. H., Zhang, Y. G., Sun, S. L., **, D., & Wang, Y. G. (2014). Soil ammonia volatilization under different urea combined fertilization treatments. Chinese Journal of Ecology, 33(11), 2943–2949.

    CAS  Google Scholar 

  • Duan, Z. H., & **ao, H. L. (2000). Effects of soil properties on ammonia volatilization. Soil Science and Plant Nutrition, 46(4), 845–852.

    Article  Google Scholar 

  • El-Hassan, S. A., & Gowen, S. R. (2006). Formulation and delivery of the bacterial antagonist Bacillus subtilis for management of lentil vascular wilt caused by Fusarium oxysporum f. sp lentis. Journal of Phytopathology, 154(3), 148–155.

    Article  Google Scholar 

  • Ferranti P (2019) The united nations sustainable development goals. Encyclopedia of Food Security Sustainability, 1, 6–8.

  • Garbeva, P., Veen, J. A., & Elsas, J. D. (2004). Assessment of the diversity, and antagonism towards Rhizoctonia solani AG3, of Pseudomonas species in soil from different agricultural regimes. FEMS Microbiology Ecology, 47(1), 51–64.

    Article  CAS  Google Scholar 

  • Gil, M. V., Carballo, M. T., & Calvo, L. F. (2008). Fertilization of maize with compost from cattle manure supplemented with additional mineral nutrients. Waste Management, 28(8), 1432–1440.

    Article  CAS  Google Scholar 

  • Gong, H. R., Li, J., Ma, J. H., Li, F. D., Ouyang, Z., & Gu, C. K. (2018). Effects of tillage practices and microbial agent applications on dry matter accumulation, yield and the soil microbial index of winter wheat in North China. Soil and Tillage Research, 184, 235–242.

    Article  Google Scholar 

  • Gonzatto, R., Miola, E. C. C., Doneda, A., Pujol, S. B., Aita, C., & Giacomini, S. J. (2013). Ammonia volatilization and nitrous oxide emissions following soil application of pig slurry in corn. Ciencia Rural, 43(9), 1590–1596.

    Article  CAS  Google Scholar 

  • Gupta, R., Bisaria, V. S., & Sharma, S. (2015). Effect of agricultural amendments on cajanus cajan (Pigeon Pea) and its rhizospheric microbial communities–A comparison between chemical fertilizers and bioinoculants. PLoS ONE, 10(7), e0132770.

    Article  Google Scholar 

  • Hou, H., Zhou, S., Hosomi, M., Toyota, K., Yosimura, K., Mutou, Y., et al. (2007). Ammonia emissions from anaerobically-digested slurry and chemical fertilizer applied to flooded forage rice. Water, Air, and Soil Pollution, 183(1–4), 37–48.

    Article  CAS  Google Scholar 

  • Hu, K., Wang, L., & Qin, J. M. (2015). Effect of combined application of microbial fertilizer and organic- chemical fertilizer on biochemical action intensity and microbe quatity of calcareous soil. Journal of Henan Agricultural Sciences, 44(10), 76–80.

    Google Scholar 

  • Huang, B. X., Su, F., Ding, X. Q., Hu, X. K., Gao, Z. L., Chen, X. P., et al. (2006). German wind-tunnel system for measuring ammonia volatilization from agricultural soil. Soils, 38(6), 712–716.

    CAS  Google Scholar 

  • Huang, S. Y., Chang, T., ** paddy fields. Journal of Plant Nutrition and Fertilizers, 25(12), 2102–2112.

    Google Scholar 

  • Hui, C., Sun, P. F., Guo, X. X., Jiang, H., Zhao, Y. H., & Xu, L. G. (2018). Shifts in microbial community structure and soil nitrogen mineralization following short-term soil amendment with the ammonifier Bacillus amyloliquefaciens DT. International Biodeterioration & Biodegradation, 132, 40–48.

    Article  CAS  Google Scholar 

  • Jia, Z. J., & Conrad, R. (2009). Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environmental Microbiology, 11(7), 1658–1671.

    Article  CAS  Google Scholar 

  • Kazerooni, E. A., Maharachchikumbura, S. S. N., Adhikari, A., Al-Sadi, A. M., Kang, S. M., Kim, L. R., et al. (2021). Rhizospheric Bacillus amyloliquefaciens protects capsicum annuum cv. geumsugangsan from multiple abiotic stresses via multifarious plant growth-promoting attributes. Front Plant Sci, 12, 669693.

    Article  Google Scholar 

  • Kazerooni, E. A., Maharachchikumbura, S. S. N., Al-Sadi, A. M., Kang, S. M., Yun, B. W., & Lee, I. J. (2021). Biocontrol potential of Bacillus amyloliquefaciens against Botrytis pelargonii and Alternaria alternata on Capsicum annuum. Journal of Fungi (Basel), 7(6), 472.

    Article  CAS  Google Scholar 

  • Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerd, A., et al. (2016). The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. The Soil, 2(2), 111–128.

    Article  Google Scholar 

  • Khalil, M. I., Schmidhalter, U., & Gutser, R. (2006). N2O, NH3 and NOx emissions as a function of urea granule size and soil type under aerobic conditions. Water, Air, and Soil Pollution, 175(1–4), 127–148.

    Article  CAS  Google Scholar 

  • Kissel, D. E., Cabrera, M. L., Vaio, N., Craig, J. R., Rema, J. A., & Morris, L. A. (2009). Forest floor composition and ammonia loss from urea in a loblolly pine plantation. Soil Science Society of America Journal, 73(2), 630–637.

    Article  CAS  Google Scholar 

  • Kravkaz Kuscu, I. S., Cetin, M., Yigit, N., Savaci, G., & Sevik, H. (2018). Relationship between enzyme activity (urease-catalase) and nutrient element in soil use. Polish Journal of Environmental Studies, 27, 2107–2112.

  • Lal, R., Bouma, J., Brevik, E., Dawson, L., Field, D. J., Glaser, B., et al. (2021). Soils and sustainable development goals of the United Nations: An International Union of Soil Sciences perspective. Geoderma Regional, 25, e00398.

    Article  Google Scholar 

  • Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., & Pozzer, A. (2015). The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525(7569), 367–371.

    Article  CAS  Google Scholar 

  • Li, H., Deng, L. J., Hu, J., Liu, T. T., Deng, O. P., & Gao, X. S. (2015). Dynamic changes of nitrogen and phosphorus in surface water of paddy fields with fungi residues return in Chengdu plain. Journal of Soil and Water Conservation, 29(3), 295–300.

    Google Scholar 

  • Li, Q. Q., Li, Y. F., Gao, Q., Li, S. Q., Chen, X. P., Zhang, F. S., et al. (2015). Effect of conventional and optimized nitrogen fertilization on spring maize yield, ammonia volatilization and nitrogen balance in soil-maize system. Journal of Plant Nutrition and Fertitizer, 21(3), 571–579.

    Google Scholar 

  • Li, Y. F., Jia, K., Wang, J. Y., Feng, G. Z., Yan, L., Deng, C., et al. (2015c). Ammonia volatilization characteristics of different kinds of high-nitrogen compound fertilizers and their effects on nitrogen balance. Journal of Plant Nutrition and Fertitizer, 21(3), 615–623.

    CAS  Google Scholar 

  • Li, T. L., Zhou, M., Qiu, Y., Huang, J. Y., Wu, Y. H., Zhang, S. Q., et al. (2019). Membrane-based conductivity probe for real-time in-situ monitoring rice field ammonia volatilization. Sensors and Actuators b: Chemical, 286, 62–68.

    Article  CAS  Google Scholar 

  • Lilienfeld, E., Nicholas, P. K., Breakey, S., & Corless, I. B. (2018). Addressing climate change through a nursing lens within the framework of the United Nations Sustainable Development Goals. Nursing Outlook, 66(5), 482–494.

    Article  Google Scholar 

  • Liu, Z.H., Zhang, L., Zhou, M., Chen, Y.F., Chen, D., & Chen, Q. (2020). Impact of ammonia emission reductions on fine particulate matter concentrations over North China. in The twenty-fourth symposium on Air Pollution Control Technology. Guangzhou, Guangdong, China.

  • Lu, L. L., & Wu, G. Y. (2019). Advances in affecting factors of ammonia emission in farmland. Journal of China Agricultural University, 24(1), 149–162.

    Google Scholar 

  • Ma, Q., Cong, Y., Feng, L., Liu, C., Yang, W., **n, Y., et al. (2021). Effects of mixed culture fermentation of Bacillus amyloliquefaciens and Trichoderma longibrachiatum on its constituent strains and the biocontrol of tomato Fusarium wilt. Journal of Applied Microbiology., 132(1), 532–546.

    Article  Google Scholar 

  • Machuca, L. L., Jeffrey, R., & Melchers, R. E. (2016). Microorganisms associated with corrosion of structural steel in diverse atmospheres. International Biodeterioration & Biodegradation, 114, 234–243.

    Article  CAS  Google Scholar 

  • Mandal, S., Donner, E., Vasileiadis, S., Skinner, W., Smith, E., & Lombi, E. (2018). The effect of biochar feedstock, pyrolysis temperature, and application rate on the reduction of ammonia volatilisation from biochar-amended soil. Science of the Total Environment, 627, 942–950.

    Article  CAS  Google Scholar 

  • Marchetto, A., Rogora, M., & Arisci, S. (2013). Trend analysis of atmospheric deposition data: A comparison of statistical approaches. Atmospheric Environment, 64, 95–102.

    Article  CAS  Google Scholar 

  • Pekkan, O. I., Senyel Kurkcuoglu, M. A., Cabuk, S. N., Aksoy, T., Yilmazel, B., Kucukpehlivan, T., et al. (2021). Assessing the effects of wind farms on soil organic carbon. Environmental Science Pollution Research, 28(14), 18216–18233.

    Article  Google Scholar 

  • Pfluke, P. D., Jokela, W. E., & Bosworth, S. C. (2011). Ammonia volatilization from surface-banded and broadcast application of liquid dairy manure on grass forage. Journal of Environmental Quality, 40(2), 374–382.

    Article  CAS  Google Scholar 

  • Ren, L., Cai, C., Zhang, J., Yang, Y., Wu, G., Luo, L., et al. (2018). Key environmental factors to variation of ammonia-oxidizing archaea community and potential ammonia oxidation rate during agricultural waste composting. Bioresource Technology, 270, 278–285.

    Article  CAS  Google Scholar 

  • Sanz-Cobena, A., Misselbrook, T. H., Arce, A., Mingot, J. I., Diez, J. A., & Vallejo, A. (2008). An inhibitor of urease activity effectively reduces ammonia emissions from soil treated with urea under Mediterranean conditions. Agriculture, Ecosystems & Environment, 126(3–4), 243–249.

    Article  CAS  Google Scholar 

  • SDG, U. (2015). Transforming our World: the 2030 Agenda for Sustainable Development. United Nations General Assembly.

  • She, D., Wang, H., Yan, X., Hu, W., Zhang, W., Li, J., et al. (2018). The counter-balance between ammonia absorption and the stimulation of volatilization by periphyton in shallow aquatic systems. Bioresource Technology, 248(Pt B), 21–27.

    Article  CAS  Google Scholar 

  • Shen, J. P., Zhang, L. M., Zhu, Y. G., Zhang, J. B., & He, J. Z. (2008). Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environmental Microbiology, 10(6), 1601–1611.

    Article  CAS  Google Scholar 

  • Silva, R. G., Cameron, K. C., Di, H. J., & Jorgensen, E. E. (2005). A lysimeter study to investigate the effect of dairy effluent and urea on cattle urine N losses, plant uptake and soil retention. Water, Air, and Soil Pollution, 164(1), 57–78.

    Article  CAS  Google Scholar 

  • Singurindy, O., Molodovskaya, M., Richards, B. K., & Steenhuis, T. S. (2008). Gaseous nitrogen emission from soil aggregates as affected by clay mineralogy and repeated urine applications. Water, Air, and Soil Pollution, 195(1–4), 285–299.

    Article  CAS  Google Scholar 

  • Soares, J. R., Cantarella, H., & Menegale, MLd. C. (2012). Ammonia volatilization losses from surface-applied urea with urease and nitrification inhibitors. Soil Biology and Biochemistry, 52, 82–89.

    Article  CAS  Google Scholar 

  • Sun, K. J., Lu, Q. M., Mao, X. Y., & Liao, Z. W. (2005). Release-controlling complex material’s capability, fertilizer efficiency and coating characteristics. Acta Pedologica Sinica, 42(1), 127–133.

    CAS  Google Scholar 

  • Sun, Z. M., Wu, Z. J., Chen, L. J., & Liu, Y. G. (2006). Research advances in nitrogen fertilization and its environmental effects. Chinese Journal of Soil Science, 37(4), 782–786.

    CAS  Google Scholar 

  • Sun, X., Zhong, T., Zhang, L., Zhang, K., & Wu, W. (2019). Reducing ammonia volatilization from paddy field with rice straw derived biochar. Science of the Total Environment, 660, 512–518.

    Article  CAS  Google Scholar 

  • Sun, B., Bai, Z. H., Bao, L. J., Xue, L. X., Zhang, S. W., Wei, Y. X., et al. (2020). Bacillus subtilis biofertilizer mitigating agricultural ammonia emission and shifting soil nitrogen cycling microbiomes. Environment International, 144, 10.

    Article  Google Scholar 

  • Sun, H., Feng, Y., Xue, L., Mandal, S., Wang, H., Shi, W., et al. (2020). Responses of ammonia volatilization from rice paddy soil to application of wood vinegar alone or combined with biochar. Chemosphere, 242, 125247.

    Article  CAS  Google Scholar 

  • Tian, Y. H., Zeng, K., & Yin, B. (2019). Ammonia emission following basal and tillering fertilization in Taihu Lake region relative to monitoring techniques. Acta Pedologica Sinica, 56(5), 1180–1189.

    Google Scholar 

  • Varotsos, C. A., & Cracknell, A. P. J. R. S. L. (2020). Remote sensing letters contribution to the success of the Sustainable Development Goals-UN 2030 agenda. Remote Sensing Letters, 11(8), 715–719.

    Article  Google Scholar 

  • Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., & Lorito, M. (2008). Trichoderma-plant-pathogen interactions. Soil Biology & Biochemistry, 40(1), 1–10.

    Article  CAS  Google Scholar 

  • Wang, Z., Liu, X. J., Ju, X. T., & Zhang, F. S. (2002). Field in situ determination of ammonia volatilization from soil: Venting method. Plant Nutrition and Fertitizer Science, 8(2), 205–209.

    Google Scholar 

  • Wang, B. B., Shen, Z. Z., Zhang, F. G., Raza, W., Yuan, J., Huang, R., et al. (2016). Bacillus amyloliquefaciens strain W19 can promote growth and yield and suppress fusarium wilt in banana under greenhouse and field conditions. Pedosphere, 26(5), 733–744.

    Article  CAS  Google Scholar 

  • Wang, X., Xu, S., Wu, S., Feng, S., Bai, Z., Zhuang, G., et al. (2018). Effect of Trichoderma viride biofertilizer on ammonia volatilization from an alkaline soil in Northern China. Journal of Environmental Sciences (china), 66, 199–207.

    Article  CAS  Google Scholar 

  • Wang, L., Mi, J. W., Chi, M., Tian, X. W., Shan, H. Y., Wang, Y. X., et al. (2020). Development and field application of microbial inoculum from Bacillus amyloliquefaciens DS-1. Plant Protection, 46(5), 64–69.

    Google Scholar 

  • Wang, S. W., Wang, Q. H., Zhai, L. P., Liu, J., Yu, Z. D., & **ang, W. S. (2020). Advances in application of multi-component analysis on the functional mechanism study of Bacillus amyloliquefaciens. Journal of Hunan Agricultural University. Natural Sciences, 46(4), 410–418.

    Google Scholar 

  • Wang, J., Xu, S., Yang, R., Zhao, W., Zhu, D., Zhang, X., et al. (2021). Bacillus amyloliquefaciens FH-1 significantly affects cucumber seedlings and the rhizosphere bacterial community but not soil. Science and Reports, 11(1), 12055.

    Article  CAS  Google Scholar 

  • **, B., Zhang, J. Z., Zuo, Q., Zou, G. Y., Zhai, L. M., & Liu, H. B. (2010). Study on the losing of ammonia volatilization and its influencing factors on the protected vegetable fields’ soil. Plant Nutrition and Fertilizer Science, 16(2), 327–333.

    CAS  Google Scholar 

  • **e, L. F., He, P. F., Wu, Y. X., Liu, C. M., **ao, C., & He, Y. Q. (2018). Effect of Bacillus amyloliquefaciens 9601–Y2 on maize phyllosphere microbial communities. Journal of Maize Science, 26(2), 149–155.

    Google Scholar 

  • Xu, W. S., Jiang, Y., Li, Y., Zhang, Z., Xu, L., Hu, F., et al. (2014). Isolation, identification of plant growth-promoting bacteria and its promoting effects on peanuts. Soils, 46(1), 119–125.

    CAS  Google Scholar 

  • Xu, P., Zhang, Y. S., Gong, W. W., Hou, X. K., Kroeze, C., Gao, W., et al. (2015). An inventory of the emission of ammonia from agricultural fertilizer application in China for 2010 and its high-resolution spatial distribution. Atmospheric Environment, 115, 141–148.

    Article  CAS  Google Scholar 

  • Yang, X. Y., & Yang, H. D. (2016). Soil ammonia volatilization under the different fertilization in summer corn farmland in North China. Journal of Arid Land Resources and Environment, 30(11), 137–142.

    Google Scholar 

  • Yang, Y. H., Xue, L. X., Sun, B., Zhang, B., Zhuang, X. L., Zhuang, G. Q., et al. (2020). Bacillus amyloliquefaciens biofertilizer mitigating soil ammonia volatilization. Environmental Science, 41(10), 4711–4718.

    Google Scholar 

  • Zaman, M., Saggar, S., Blennerhassett, J. D., & Singh, J. (2009). Effect of urease and nitrification inhibitors on N transformation, gaseous emissions of ammonia and nitrous oxide, pasture yield and N uptake in grazed pasture system. Soil Biology and Biochemistry, 41(6), 1270–1280.

    Article  CAS  Google Scholar 

  • Zerpa, J. L., & Fox, T. R. (2011). Controls of volatile ammonia losses from loblolly pine plantations fertilized with urea in the southeast USA. Soil Science Society of America Journal, 75(1), 257–266.

    Article  CAS  Google Scholar 

  • Zhan, N., He, X., Zhang, J., Raza, W., Yang, X. M., Ruan, Y. Z., et al. (2014). Suppression of fusarium wilt of banana with application of bio-organic fertilizers. Pedosphere, 24(05), 613–624.

    Article  Google Scholar 

  • Zhang, L.-M., Offre, P. R., He, J.-Z., Verhamme, D. T., Nicol, G. W., & Prosser, J. I. (2010). Autotrophic ammonia oxidation by soil thaumarchaea. Proceedings of the National Academy of Sciences of the United States of America, 107(40), 17240–17245.

    Article  CAS  Google Scholar 

  • Zhang, Y., Luan, S., Chen, L., & Shao, M. (2011). Estimating the volatilization of ammonia from synthetic nitrogenous fertilizers used in China. Journal of Environmental Management, 92(3), 480–493.

    Article  CAS  Google Scholar 

  • Zhao, H. W., & Sha, H. J. (2014). Recent research of fertilizer- nitrogen use efficiency in paddy flied of China. Journal of Northeast Agricultural University, 45(2), 116–122.

    Google Scholar 

  • Zhou, L. P., Yang, L. P., Bai, Y. L., Yan, L. L., Wang, L., & Ni, L. (2016). Comparison of several slow-released nitrogen fertilizers in ammonia volatilization and nitrogen utilization in summer maize field. Journal of Plant Nutrition and Fertitizer, 22(6), 1449–1457.

    Google Scholar 

  • Zhou, Z. F., Zhang, Z. Y., Wang, M. X., Liu, Y. M., & Dai, J. S. (2018). Effect of the nitrification inhibitor (3, 4-dimethylpyrazole phosphate) on the activities and abundances of ammonia-oxidizers and denitrifiers in a phenanthrene polluted and waterlogged soil. Ecotoxicology and Environmental Safety, 161, 474–481.

    Article  CAS  Google Scholar 

  • Zhu, Z. L., Simpson, J. R., Zhang, S. L., Cai, G. X., Chen, D. L., Freney, J. R., & Jackson, A. V. (1986). Investigations on nitrogen losses from fertilizers applied to flooded calcareous paddy soil. Acta Pedologica Sinica, 26, 337–343.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengjun Xu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maihaiti, M., Ma, S., Wang, X. et al. A Study of Controlling of Soil Ammonia Volatilization by Bacillus amyloliquefaciens and Its Mechanism. Water Air Soil Pollut 234, 3 (2023). https://doi.org/10.1007/s11270-022-05983-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05983-1

Keywords

Navigation