Log in

Carbon Sequestration Potential of Agroforestry Systems and Its Potential in Climate Change Mitigation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Agroforestry, a sustainable land use practice adopted as a strategy under Kyoto Protocol, plays a crucial role to mitigate the inevitable climate change with a promising potential of carbon sequestration in their biomass and utilization of their numerous resource. Agroforestry is crucial for reducing greenhouse gas emissions, sustaining livelihoods, and partial solutions for biodiversity conservation. Worldwide, agroforestry is practiced by more than 1.2 billion people, on around 1 billion hectares (ha) of land area, while in India, around 25.32 million hectares area comes under agroforestry. Agroforestry system is the enhancement of overall farm productivity, soil enrichment through litter fall, above and below ground carbon sequestration, maintaining environmental services. Different agroforestry systems are adapted at the global level and periodic monitoring and estimation of area under agroforestry, monitoring of tree and soil carbon stocks is still a challenging task due to the lack of uniform methodology. The review analyzes the potential of agroforestry systems for climate adaptation and mitigation as well as their implications for the livelihood of human well-being.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

Code Availability

Not applicable.

References

  • Ajit, Handa, A. K., Dhyani, S. K., Bhat, G. M., Malik, A. R., Dutt, V., Masoodi, T. H., Uma & Jain, A. (2017a). Quantification of carbon stocks and sequestration potential through existing agroforestry systems in the hilly Kupwara district of Kashmir valley in India. Current Science, 113(4), 782–785.

  • Ajit, Dhyani, S. K., Handa, A. K., Newaj, R., Chavan, S. B., Alam, B., et al. (2017b). Estimating carbon sequestration potential of existing agroforestry systems in India. Agroforestry Systems, 90(4), 1101–1118.

  • Amadu, F. O., Miller, D. C., & McNamara, P. E. (2020). Agroforestry as a pathway to agricultural yield impacts in climate-smart agriculture investments: Evidence from southern Malawi. Ecological Economics, 167(1), 106443.

    Article  Google Scholar 

  • Anderson, T. R., Hawkins, E., & Jones, P. D. (2016). CO2, the greenhouse effect and global warming: From the pioneering work of Arrhenius and Callendar to today’s Earth System Models. Endeavour, 40(3), 178–187.

    Article  Google Scholar 

  • Andrew, G., Steven, M.N., & Brent, R.W. (2018). Temperate agroforestry systems (2nd ed., pp. 313). University of Guelph. CABI International.

  • Arora, P., & Chaudhry, S. (2015). Carbon sequestration potential of Populus deltoides plantation under social forestry scheme in Kurukshetra, Haryana in Northern India. Journal of Materials and Environmental Science, 6(3), 703–720.

    Google Scholar 

  • Aryal, D. R., Gomez-Gonzalez, R. R., Hernandez-Nuriasmu, R., & Morales-Ruiz, D. E. (2018). Carbon stocks and tree diversity in scattered tree silvopastoral systems in Chiapas. Mexico. Agroforestry System, 93(1), 213–227.

    Article  Google Scholar 

  • Atangana A., Khasa D., Chang S., & Degrande A. (2014). Socio-cultural aspects of agroforestry and adoption. In Tropical Agroforestry (pp. 323–332). Dordrecht: Springer, Netherland. https://doi.org/10.1007/978-94-007-7723-1_17

  • Augere-Granier, M. L. (2020). Agroforestry in the European Union. European Union. https://www.europarl.europa.eu/RegData/etudes/BRIE/2020/651982/EPRS_BRI(2020)651982_EN.pdf. Accessed 28 Oct 2021.

  • Aynekulu, E., Suber, M., Noordwijk, M. V., Arango, J., Roshetko, J. M., & Rosenstock, T. S. (2020). Carbon Storage Potential of Silvopastoral Systems of Colombia. Land, 9, 309.

    Article  Google Scholar 

  • Bachheti, R. K., Joshi, A., & Singh, A. (2011). Oil content variation and Antimicrobial activity of Eucalyptus leaves oils of three different Species of Dehradun, Uttarakhand. International Journal of ChemTech Research, 3(2), 625–628.

    Google Scholar 

  • Balloli, S.S., Rao, G.R., Veni, V.G., Kumari, V.V., & Osman, M. (2018). Carbon sequestration potential in agroforestry systems. In G. R. Rao, M. Prabhakar, G. Venkatesh, I. Srinivas, & K. S. Reddy (Eds.), Agroforestry opportunities for enhancing resilience to climate change in rainfed areas (pp. 92–98). Hyderabad: ICAR - Central Research Institute for Dryland Agriculture.

  • Banga, A., Yadava, A., & Sah, V. K. (2017). Growth, Biomass and Carbon Sequestration Potential of Different Poplar (Populus deltoides Bartr.) clones in Agroforestry System with Wheat (Triticum aestivum) Varieties in tarai belt of Uttarakhand. Journal of Environmental Sciences, 5(3), 32–36.

    Google Scholar 

  • Beer, J., Bonnemann, A., Chavez, W., Fassbender, H. W., Imbach, A. C., & Martel, I. (1990). Modelling agroforestry systems of cacao (Theobroma cacao) with laurel (Cordia alliodora) or poro (Erythrina poeppigiana) in Costa Rica. Agroforestry Systems, 12, 229–249.

    Article  Google Scholar 

  • Beule, L., Lehtsaar, E., Corre, M. D., Schmidt, M., Veldkamp, E., & Karlovsky, P. (2020). Poplar rows in temperate agroforestry croplands promote bacteria, fungi, and denitrification genes in soils. Frontiers in Microbiology, 10, 3108.

    Article  Google Scholar 

  • Bhalawe, S., Nayak, D., & Jadeja, D. B. (2019). Carbon sequestration potential of Agroforestry systems in South Gujarat conditions. Green Farming, 1, 35–40.

    Google Scholar 

  • Bijalwan, A., & Kinhal, G. (2014). Career opportunities in agroforestry and livelihood support. Employment News, 14, 48.

  • Bindoff, N.L., Stott, P.A, AchutaRao, K.M., Allen, M.R., Gillett, N., Gutzler, D., Hansingo, K., Hegerl, G., Hu, Y., Jain, S., Mokhov, I.I., Overland, J., Perlwitz, J., Sebbari, R. & Zhang, X. (2013) Detection and attribution of climate change: From global to regional. In: T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. **a, V. Bex, & P. M. Midgley (Eds.), Climate change: The physical science basis (pp. 867–952). Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, USA.

  • Booth, T. H. (2013). Eucalypt plantations and climate change. Forest Ecology and Management, 301, 28–34.

    Article  Google Scholar 

  • Brahma, B., Pathak, K., Lal, R., Kurmi, B., Das, M., Nath, P. C., Nath, A. J., & Das, A. K. (2018). Ecosystem carbon sequestration through restoration of degraded lands in Northeast India. Land Degradation and Development, 29(1), 15–25.

    Article  Google Scholar 

  • Callendar, G. S. (1938). The artificial production of carbon dioxide and its influence on temperature. Quarterly Journal of the Royal Meteorological Society, 64(275), 223–240.

    Article  Google Scholar 

  • Celentano, D., Rousseau, G. X., Paixao, L. S., Lourenco, F., Cardozo, E. G., Rodrigues, T. O., Silva, H. R., Medina, J., deSousa, T. M. C., Rocha, A. E., & Reis, F. O. (2020). Carbon sequestration and nutrient cycling in agroforestry systems on degraded soils of Eastern Amazon. Brazil. Agroforestry System, 94(5), 1781–1792.

    Article  Google Scholar 

  • Cesur, A., Zeren Cetin, I., Abo Aisha, A. E. S., Alrabiti, O. B. M., Aljama, A. M. O., Jawed, A. A., et al. (2021). The usability of Cupressus arizonica annual rings in monitoring the changes in heavy metal concentration in air. Environmental Science and Pollution Research, 28(27), 35642–35648. https://doi.org/10.1007/s11356-021-13166-4

    Article  CAS  Google Scholar 

  • Cetin, M. (2016). A Change in the Amount of CO2 at the Center of the Examination Halls: Case Study of Turkey. Studies on Ethno-Medicine, 10(2), 146–155. https://doi.org/10.1080/09735070.2016.11905483

    Article  Google Scholar 

  • Cetin, M., & Sevik, H. (2016a). Measuring the Impact of Selected Plants on Indoor CO 2 Concentrations. Polish Journal of Environmental Studies., 25(3).

  • Cetin, M., & Sevik, H. (2016b). Change of air quality in kastamonu city in terms of particulate matter and CO2 amount. Oxidation Communications, 39, 3394–3401.

    CAS  Google Scholar 

  • Cetin, M., & Jawed, A.A. (2022). Variation of Ba concentrations in some plants grown in Pakistan depending on traffic density. Biomass Conversion and Biorefinery, 1–7. https://doi.org/10.1007/s13399-022-02334-2

  • Cetin, M., Onac, A. K., Sevik, H., & Sen, B. (2019). Temporal and regional change of some air pollution parameters in Bursa. Air Quality, Atmosphere and Health, 12(3), 311–316.

    Article  CAS  Google Scholar 

  • Cetin, M., Sevik, H., & Cobanoglu, O. (2020). Ca, Cu, and Li in washed and unwashed specimens of needles, bark, and branches of the blue spruce (Picea pungens) in the city of Ankara. Environmental Science and Pollution Research, 27(17), 21816–21825.

    Article  CAS  Google Scholar 

  • Chandra, K. K., & Singh, A. K. (2018). Carbon stock appraisal of naturally growing trees on farmlands in plain zone districts of Chhattisgarh, India. Tropical Ecology, 59(4), 679–689.

    CAS  Google Scholar 

  • Change, C. (1990). The IPCC scientific assessment. In J. T. Houghton, G. Jenkins, J. J. Ephraums (Eds). New York, USA. 1, 990.

  • Chavan, S. B., & Dhillon, R. S. (2019). Doubling farmers’ income through Populus deltoides-based agroforestry systems in northwestern India: An economic analysis. Current Science, 117(2), 25.

    Article  Google Scholar 

  • Chavan, S. B., Uthappa, A. R., Sridhar, K. B., Keerthika, A., Handa, A. K., Newaj, R., Kumar, N., Kumar, D., & Chaturvedi, O. P. (2016). Trees for life: Creating sustainable livelihood in Bundelkhand region of central India. Current Science, 111(6), 994–1002.

    Article  Google Scholar 

  • Chavan, S. B., Newaj, R., Rizvi, R. H., AjitPrasad, R., Alam, B., Handa, A. K., Dhyani, S. K., Jain, A., & Tripathi, D. (2020). Reduction of global warming potential vis-a-vis greenhouse gases through traditional agroforestry systems in Rajasthan India. Environment Development and Sustainability., 23(5), 4573–4593.

    Google Scholar 

  • Choudhary, V. K., Singh, S. L., Dixit, A., Arunachalam, A., & Bhagawati, R. (2014). Biomass and carbon sequestration potential of agroforestry trees in Arunachal Pradesh, North East India. Climate Change and Environmental Sustainability, 2(1), 48–54.

    Article  Google Scholar 

  • Dhillon, G. S., & Rees, K. C. J. V. (2017). Soil organic carbon sequestration by shelterbelt agroforestry systems in Saskatchewan. Canadian Journal of Soil Science, 97, 394–409.

    CAS  Google Scholar 

  • Dhyani, S. K. (2014). National Agroforestry Policy 2014 and the need for area estimation under agroforestry. Current Science, 107(1), 9–10.

    Google Scholar 

  • Dhyani, S. K., Ram, A., & Dev, I. (2016). Potential of agroforestry systems in carbon sequestration in India. Indian Journal of Agricultural Sciences, 86(9), 1103–1112.

    CAS  Google Scholar 

  • Diagne, N., Arumugam, K., Ngom, M., Nambiar-Veetil, M., Franche, C., Narayanan, K. K., & Laplaze, L. (2013). Use of Frankia and actinorhizal plants for degraded lands reclamation. BioMed Research International, 2013(2), 948258.

    Google Scholar 

  • Dollinger, J., & Jose, S. (2018). Agroforestry for Soil Health. Agroforestry System, 92(2), 213–219.

    Article  Google Scholar 

  • Duffy, C., Toth, G. G., Hagan, R. P. O., McKeown, P. C., Rahman, S. A., Widyaningsih, Y., Sunderland, T. C. H., & Spillane, C. (2021). Agroforestry contributions to smallholder farmer food security in Indonesia. Agroforestry Systems, 95, 1109–1124.

    Article  Google Scholar 

  • Ehrenbergerova, L., Cienciala, E., Kucera, A., Guy, L., & Habrova, H. (2016). Carbon stock in agroforestry coffee plantations with different shade trees in Villa Rica Peru. Agroforestry System, 90, 433–445.

    Article  Google Scholar 

  • Elsunousi, A. A. M., Sevik, H., Cetin, M., Ozel, H. B., & Ozel, H. U. (2021). Periodical and regional change of particulate matter and CO2 concentration in Misurata. Environmental Monitoring and Assessment, 193(11), 707. https://doi.org/10.1007/s10661-021-09478-0

    Article  CAS  Google Scholar 

  • Fagerholm, N., Torralba, M., Burgess, P. J., & Plieninger, T. (2016). A systematic map of ecosystem services assessments around European agroforestry. Ecological Indicators, 62, 47–65.

    Article  Google Scholar 

  • Felker, P., & Bandurski, R. S. (1979). Uses and potential uses of leguminous trees for minimal energy input agriculture. Economic Botany, 33(2), 172–184.

    Article  Google Scholar 

  • FRI (Forest Research Institute) (2012). ENVIS Forestry Bulletin. Dehradun, Uttarakhand. India. http://www.frienvis.nic.in/WriteReadData/UserFiles/file/Content-Page/Vol-12-No-2/Vol-12-No-2-7-Potential-of-agroforestry.pdf. Accessed 9 May 2021.

  • Gama-Rodrigues, E. F., Gama-Rodrigues, A. C., & Nair, P. K. R. (2011). Soil carbon sequestration in cacao agroforestry systems: a case study from Bahia, Brazil. In Carbon sequestration potential of agroforestry systems (pp. 85–99). Springer.

  • Gangadharappa N.R., Shivamurthy M., & Ganesamoorthi, S. (2003). Agroforestry: a viable alternative for social, economic and ecological sustainability. In XII World Agroforestry Congress. University of Agricultural Science, Bangalore, India.

  • Gera, M. (2012). Poplar Culture for Speedy Carbon Sequestration in India: A Case Study from Terai Region of Uttarakhand. Forestry Bulletin, 12(1), 75–83.

    Google Scholar 

  • Grant, J. C., Nichols, J. D., Yao, R. L., Smith, R. G. B., Brennan, P. D., & Vanclay, J. K. (2012). Depth distribution of roots of Eucalyptus dunnii and Corymbia citriodora subsp. variegata in different soil conditions. Forest Ecology and Management, 269, 249–258.

    Article  Google Scholar 

  • Gupta, D. K., Bhatt, R. K., Keerthika, A., Noor Mohamed, M. B., Shukla, A. K., & Jangid, B. L. (2019). Carbon sequestration potential of Hardwickia binata Roxb. based agroforestry in hot semi-arid environment of India: An assessment of tree density impact. Current Science, 116, 112–116.

    Article  CAS  Google Scholar 

  • Hager, A. (2012). The effects of management and plant diversity on carbon storage in coffee agroforestry systems in Costa Rica. Agroforestry Systems, 86(2), 159–174.

    Article  Google Scholar 

  • Hergoualch, K., Blanchart, E., Skiba, U., Henault, C., & Harmand, J. M. (2012). Changes in carbon stock and greenhouse gas balance in a coffee (Coffea arabica) monoculture versus an agroforestry system with Inga densiflora, in Costa Rica. Agriculture, Ecosystems & Environment, 148, 102–110.

    Article  CAS  Google Scholar 

  • Hoegh-Guldberg, O. (2011). The impact of climate change on coral reef ecosystems. In Coral reefs: An ecosystem in transition (pp. 391–403). Dordrecht: Springer, Netherland.

  • Hong, Y., Heerink, N., **, S., Berentsen, P., Zhang, L., & Van der Werf, W. (2017). Intercrop** and agroforestry in China – Current state and trends. Agriculture, Ecosystems & Environment, 244, 52–61.

    Article  Google Scholar 

  • Howlett, D. S., Mosquera-Losada, M. R., Nair, P. K. R., Nair, V. D., & Rigueiro-Rodríguez, A. (2011). Soil Carbon Storage in Silvopastoral Systems and a Treeless Pasture in Northwestern Spain. Journal of Environmental Quality, 40(3), 825–832.

    Article  CAS  Google Scholar 

  • Howlett, D. (2009). Environmental amelioration potential of silvopastoral agroforestry system in Spain: soil carbon sequestration and phosphorus retention. PhD Dissertation, University of Florida, Gainesville, USA.

  • Indrajaya, Y., Siarudin, M., & Handayani, W. (2014). Karbon tersimpan dalam biomassa agroforestry jabon-kapulaga dan rumput gajah di Kecamatan Pakenjeng, Garut, Jawa Barat. Journal Penelit. Agroforestry, 2, 67–74.

    Google Scholar 

  • Jamnadass, R., Place, F., Torquebiau, E., Malezieux, E., Iiyama, M., Sileshi, G. W., Kehlenbeck, K., Masters, E., McMullin, S. & Dawson, I. (2013). Agroforestry for food and nutritional security. Unasylva, 64(2), 23–29.

  • Jhariya, M. K., Yadav, D. K., & Banerjee, A. (2019). Agroforestry and climate change: issues and challenges. Apple Academic Press Inc., Palm Bay,  pp. 335. https://doi.org/10.1201/9780429057274

  • Jose, S. (2009). Agroforestry for ecosystem services and environmental benefits: An overview. Agroforestry Systems, 76(1), 1–10.

    Article  Google Scholar 

  • Jose, S. (2019). Environmental impacts and benefits of agroforestry. In Oxford Research Encyclopedia of Environmental Science. https://doi.org/10.1093/acrefore/9780199389414.013.195

    Article  Google Scholar 

  • Kalita, R. M., Das, A. K., & Nath, A. J. (2016a). Carbon stock and sequestration potential in biomass of tea agroforestry system in Barak Valley, Assam, North East India. International Journal of Ecology and Environmental Sciences, 42, 107–114.

  • Kalita, R. M., Das, A. K., & Nath, A. J. (2016b). Assessment of soil organic carbon stock under tea agroforestry system in Barak valley, north east India. International Journal of Ecology and Environmental Sciences, 42(2), 175–182.

  • Kareemulla, K., Rizvi, R. H., Kumar, K., Dwivedi, R. P., & Singh, R. (2005). Poplar agroforestry systems of western Uttar Pradesh in Northern India: A Socioeconomic Analysis. For. Trees Livelihoods, 15(4), 375–381.

    Article  Google Scholar 

  • Kaul, M., Mohren, G. M. J., & Dadhwal, V. K. (2010). Carbon storage and sequestration potential of selected tree species in India. Mitigation and Adaptation Strategies for Global Change, 15(5), 489–510.

    Article  Google Scholar 

  • Kay, S., Rega, C., Moreno, G., den Herder, M., Palma, J. H. N., Borek, R., Crous-Duran, J., Freese, D., Giannitsopoulos, N., Graves, A., et al. (2019). Agroforestry creates carbon sinks whilst enhancing the environment in agricultural landscapes in Europe. Land Use Policy, 83, 581–593.

    Article  Google Scholar 

  • Keerthika, A., Chavan, S., Dhyani, S., Handa, A. K., Newaj, R., & Rajarajan, K. (2015). National Agroforestry Policy in India: A low hanging fruit. Current Science, 108, 25–2015.

    Google Scholar 

  • Koul, D. N., Shukla, G., Panwar, P., & Chakravarty, S. (2011). Status of soil carbon sequestration under different land use systems in Terai Zone of West Bengal. Journal Environment We: International Journal of Science & Technology, 6, 95–100.

    Google Scholar 

  • Krapivin, V. F., & Varotsos, C. A. (2016). Modelling the CO2 atmosphere-ocean flux in the upwelling zones using radiative transfer tools. Journal of Atmospheric and Solar-Terrestrial Physics, 150–151, 47–54.

    Article  CAS  Google Scholar 

  • Krapivin, V. F., Varotsos, C. A., & Soldatov, V. Y. (2017a). Simulation results from a coupled model of carbon dioxide and methane global cycles. Ecological Modelling, 359, 69–79.

  • Krapivin, V. F., Varotsos, C. A., & Soldatov, V. Y. (2017b). The earth’s population can reach 14 billion in the 23rd century without significant adverse effects on survivability. International Journal of Environmental Research and Public Health, 14(8), 885.

  • Kumar, K. S. N., & Maheswarappa, H. P. (2019). Carbon sequestration potential of coconut based crop** systems under integrated nutrient management practices. Journal of Plantation Crops, 47(2), 107–114.

    Google Scholar 

  • Kumar, B. M., Jacob George, S., Jamaludheen, V., & Suresh, T. K. (1998). Comparison of biomass production, tree allometry and nutrient use efficiency of multipurpose trees grown in woodlot and silvopastoral experiments in Kerala India. Forest Ecology and Management., 112(1), 145–163.

  • Kumar, P., Singh, R. P., Singh, A. K., & Kumar, V. (2014). Quantification and distribution of agroforestry systems and practices at global level. HortFlora Research Spectrum, 3(1), 1–6.

    Google Scholar 

  • Kumar, S., Bijalwan, A., Singh, B., Rawat, D., Yewale, A. G., Riyal, M. K., & Thakur, T. K. (2021). Comparison of Carbon Sequestration Potential of Quercus leucotrichophora–Based Agroforestry Systems and Natural Forest in Central Himalaya. India. Water Air Soil Pollution, 232, 350.

    Article  CAS  Google Scholar 

  • Kumar, B.M., Singh, A.K., & Dhyani, S.K. (2012) South Asian agroforestry: traditions, transformations, and prospects. In: P. K. R. Nair,  D. Garrity (Eds.), Agroforestry—the future of global land use. Advances in agroforestry (pp. 359–389). Dordrecht: Springer, Netherland. https://doi.org/10.1007/978-94-007-4676-3_19

  • Kweku, D. W., Bismark, O., Maxwell, A., Desmond, K. A., Danso, K. B., Oti, E. A., Mensah Quachie, A. T., & Adormaa, B. B. (2017). Greenhouse Effect: Greenhouse Gases and Their Impact on Global Warming. Journal of Scientific Research & Reports, 17(6), 1–9.

    Article  Google Scholar 

  • Lal, R. (1999). Global carbon pools and fluxes and the impact of agricultural intensification and judicious land use. Prevention of land degradation, enhancement of carbon sequestration and conservation of biodiversity through land use change and sustainable land management with a focus on Latin America and the Caribbean, Rome, Food and Agriculture Organization of the United Nations. World Soil Resources Report, 86, 45–52.

  • Lee, H., & Cheong, H. W. (2018). Effects of carbon dioxide and clouds on temperature. Procedia Computer Science, 139, 95–103.

    Article  Google Scholar 

  • Lindsey, R. (2020). Climate change: Atmospheric Carbon Dioxide. Understanding Climate. https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide. Accessed 3 Nov 2021.

  • Lorenz, K., & Lal, R. (2014). Soil organic carbon sequestration in agroforestry systems. A Review. Agronomy for Sustainable Development, 34, 443–454.

    Article  CAS  Google Scholar 

  • Maier, R.M. (2015). Biogeochemical Cycling. In Pepper, I.L., Gerba, C.P. & T.J. Gentry: Environmental Microbiology (3rd Eds.), San Diego: Academic Press, California. (pp. 339–373). https://doi.org/10.1016/B978-0-12-394626-3.00016-8

  • Manaye, A., Tesfamariam, B., Tesfaye, M., Worku, A., & Guf, Y. (2021). Tree diversity and carbon stocks in agroforestry systems in northern Ethiopia. Carbon Balance and Management, 16, 14.

    Article  Google Scholar 

  • Mangalassery, S., Dayal, D., Meena, S. L., & Ram, B. (2014). Carbon sequestration in agroforestry and pasture systems in arid northwestern India. Current Science, 107(8), 1290–1293.

    CAS  Google Scholar 

  • Mayer, S., Wiesmeier, M., Sakamoto, E., Hubner, R., Cardinael, R., Kuhnel, A., & Kogel-Knabner, I. (2022). Soil organic carbon sequestration in temperate agroforestry systems – A meta-analysis. Agriculture, Ecosystems & Environment, 323, 107689.

    Article  CAS  Google Scholar 

  • Mbow, C., Smith, P., Skole, D., Duguma, L., & Bustamante, M. (2014). Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Current Opinion in Environment Sustainability, 6, 8–14.

    Article  Google Scholar 

  • McAdam, J.H., Burgess, P.J., Graves, A.R., Rigueiro-Rodríguez, A., & Mosquera-Losada, M.R. (2009). Classifications and functions of agroforestry systems in Europe. In Agroforestry in Europe (pp. 21–41). Springer.

  • Monteith, J. L., Ong, C. K., & Corlett, J. E. (1991). Microclimatic interactions in agroforestry systems. Forest Ecology and Management, 45(1–4), 31–44.

    Article  Google Scholar 

  • Nair, P. K. R. (1991). State-of-the-art of agroforestry systems. Forest Ecology and Management, 45(1–4), 5–29.

    Article  Google Scholar 

  • Nair, P. K. R., Mohan Kumar, B., & Nair, V. D. (2009). Agroforestry as a strategy for carbon sequestration. Journal of Plant Nutrition and Soil Science, 172(1), 10–23.

    Article  CAS  Google Scholar 

  • Nair, P. K. R., Nair, V. D., Mohan Kumar, B., & Showalter, J. M. (2010). Chapter Five - Carbon Sequestration in Agroforestry Systems. In D. L. B. T.-A. in A. Sparks (Ed.), (Vol. 108, pp. 237–307). Academic Press. https://doi.org/10.1016/S0065-2113(10)08005-3

  • Nath, A. J., & Das, A. K. (2012). Carbon pool and sequestration potential of village bamboos in the agroforestry system of northeast India. Tropical Ecology, 53(3), 287–293.

    CAS  Google Scholar 

  • Neumann, C.R., Hobbs, T.J., & Tucker, M. (2011). Carbon sequestration and biomass production rates from agroforestry in lower rainfall zones (300-650 mm) of South Australia: Southern Murray-Darling Basin Region. Adelaide & Future Farm Industries Cooperative Research Centre, 32.

  • Neupane, R. P., & Thapa, G. B. (2001). Impact of agroforestry intervention on soil fertility and farm income under the subsistence farming system of the middle hills, Nepal. Agriculture, Ecosystems & Environment, 84(2), 157–167.

    Article  Google Scholar 

  • Newaj, R., Chavan, S. B., Alam, B., & Dhyani, S. K. (2016). Biomass and carbon storage in trees grown under different agroforestry systems in semi arid region of central India. Indian Forest., 142, 642–648.

    Google Scholar 

  • Nowak, D. J., Hirabayashi, S., Bodine, A., & Greenfield, E. (2014). Tree and forest effects on air quality and human health in the United States. Environmental Pollution, 193, 119–129.

    Article  CAS  Google Scholar 

  • Oberthur, S., & Ott, H. E. (1999). The Kyoto protocol: International climate policy for the 21st century (pp. 350). Springer.

  • OECD, O. for the E. C. and D. (2009). Cost-effective actions to tackle climate change. https://www.oecd.org/env/Policy_Brief_Costeffective_actions_to_tackle_climate_change.pdf. Accessed 30 Oct 2021.

  • Oelbermann, M., Voroney, R. P., Gordon, A. M., Kass, D. C. L., Schlonvoigt, A. M., & Thevathasan, N. V. (2006). Soil carbon dynamics and residue stabilization in a Costa Rican and southern Canadian alley crop** system. Agroforestry Systems, 68, 27–36.

    Article  Google Scholar 

  • Ortega-Castillejos, D. K. A. (2018). The Asian Continent: Its Origin and Evolution BT - Practical Aspects of Hair Transplantation in Asians. In D. Pathomvanich & K. Imagawa (Eds.), (pp. 3–6). Tokyo: Springer Japan. https://doi.org/10.1007/978-4-431-56547-5_1

  • Ozel, H. B., Abo Aisha, A. E. S., Cetin, M., Sevik, H., & Zeren Cetin, I. (2021). The effects of increased exposure time to UV-B radiation on germination and seedling development of Anatolian black pine seeds. Environmental Monitoring and Assessment, 193(7), 388.

    Article  CAS  Google Scholar 

  • Pandey, A., Sinha, P. R., & Dhawan, V. K. (2020). Socio-economic study of poplar (Populus deltoides) based agroforestry model in Vaishali district of Bihar. Journal of Pharmacognosy and Phytochemistry, 9(1), 1739–1741.

    Google Scholar 

  • Pantera, Α, Mosquera-Losada, M. R., Herzog, F., & den Herder, M. (2021). Agroforestry and the Environment. Agrofor Syst., 95(5), 767–774.

    Article  Google Scholar 

  • Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J. K., Thomas, C. D., Descimon, H., et al. (1999). Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399(6736), 579–583.

    Article  CAS  Google Scholar 

  • Pawlick, T. (1989). Agroforestry: A very social science. Agroforestry Today, 1(2), 2–5.

    Google Scholar 

  • Peichl, M., Thevathasan, N. V., Gordon, A. M., Huss, J., & Abohassan, R. A. (2006). Carbon sequestration potentials in temperate tree-based intercrop** systems, southern Ontario Canada. Agroforestry System, 66, 243–257.

    Article  Google Scholar 

  • Pekkan, O. I., Senyel Kurkcuoglu, M. A., Cabuk, S. N., Aksoy, T., Yilmazel, B., Kucukpehlivan, T., et al. (2021). Assessing the effects of wind farms on soil organic carbon. Environmental Science and Pollution Research, 28(14), 18216–18233.

    Article  Google Scholar 

  • Peri, P. L., Banegas, N., Gasparri, I., Carranza, C. H., Rossner, B., Pastur, G. M., Cavallero, L., López, D.R., Loto, D., Fernández, P., Powel, P., Ledesma, M., Pedraza, R., Albanesi, A., Bahamonde, H., Eclesia, R.P. and Pineiro, G. (2017). Carbon Sequestration in Temperate Silvopastoral Systems, Argentina. Integrating Landscapes: Agroforestry for Biodiversity Conservation and Food Sovereignty, 453–478https://doi.org/10.1007/978-3-31969371-2_19

  • Pinheiro, R. C., de Deus, J. C., Nouvellon, Y., Campoe, O. C., Stape, J. L., Alo, L. L., Guerrini, I. A., Jourdan, C., & Lacau, J. P. (2016). A fast exploration of very deep soil layers by Eucalyptus seedlings and clones in Brazil. Forest Ecology and Management, 366, 143–152.

    Article  Google Scholar 

  • Plass, G. N. (1956). The carbon dioxide theory of climatic change. Tellus, 8(2), 140–154.

    Article  Google Scholar 

  • Primack, D., Imbres, C., Primack, R. B., Miller-Rushing, A. J., & Del Tredici, P. (2004). Herbarium specimens demonstrate earlier flowering times in response to warming in Boston. American Journal of Botany, 91(8), 1260–1264.

    Article  Google Scholar 

  • Quandt, A., Neufeldt, H., & McCabe, J. T. (2017). The role of agroforestry in building livelihood resilience to floods and drought in semiarid Kenya. Ecology and Society, 22(3), 10.

    Article  Google Scholar 

  • Rahman, S. A., Jacobsen, J. B., Healey, J. R., Roshetko, J. M., & Sunderland, T. (2017). Finding alternatives to swidden agriculture: Does agroforestry improve livelihood options and reduce pressure on existing forest? Agroforestry Systems, 91(1), 185–199.

    Article  Google Scholar 

  • Ramnewaj & Dhyani, S. K. (2008). Agroforestry for carbon sequestration: scope and present status. Indian Journal of Agroforestry, 10:1-9.

  • Ranasinghe, C. S., & Thimothias, K. S. H. (2012). Estimation of carbon sequestration potential in coconut plantations under different agro-ecological regions and land suitability classes. J. Natn. Sci. Foundation Sri Lanka, 40(1), 77–93.

    Article  Google Scholar 

  • Retnowati, E. (2003). Sustainable development through a complex agroforestry in Indonesia. In XII World Forestry Congress. Quebec City, Canada.

  • Rizvi, R. H., Newaj, R., Prasad, R., Handa, A. K., Alam, B., Chavan, S. B., Saxena, A., Karmakar, P. S., Jain, A., & Chaturvedi, M. (2016). Assessment of carbon storage potential and area under agroforestry systems in Gujarat Plains by CO2FIX model and remote sensing techniques. Current Science, 110(10), 2005–2011.

    Article  CAS  Google Scholar 

  • Rizvi, R. H., Newaj, R., Chaturvedi, O. P., Prasad, R., Badrealam Handa, A. K., Karmakar, P. S., Saxena, A., Chaturvedi, M., Singh, A., & Singh, K. (2017). Mitigating climate vagaries through adoption of agroforestry land use in Maharashtra, India. Indian Journal of Agricultural Sciences, 87(11), 108–111.

    Google Scholar 

  • Rizvi, R. H., Newaj, R., Chaturvedi, O. P., Prasad, R., Handa, A. K., & Alam, B. (2019). Carbon sequestration and CO2 absorption by agroforestry systems: An assessment for Central Plateau and Hill region of India. Journal of Earth System Science, 128(3), 1–9.

    Article  CAS  Google Scholar 

  • Rizvi, R. H., Dhyani, S. K., Newaj, R., Karmakar, P. S., & Saxena, A. (2014). Map** agroforestry area in India through remote sensing and preliminary estimates.

  • Rosenstock, T. S., Dawson, I. K., Aynekulu, E., Chomba, S., Degrande, A., Fornace, K., et al. (2019). A Planetary Health Perspective on Agroforestry in Sub-Saharan Africa. One Earth, 1(3), 330–344.

    Article  Google Scholar 

  • Rumble, M. A., & Gobeille, J. E. (2004). Avian use of successional cottonwood (Populus deltoides) woodlands along the middle Missouri River. American Midland Naturalist, 152(1), 165–177.

    Article  Google Scholar 

  • Russell, A. E., & Kumar, B. M. (2019). Modeling Experiments for Evaluating the Effects of Trees, Increasing Temperature, and Soil Texture on Carbon Stocks in Agroforestry Systems in Kerala India. Forests, 10, 803.

    Article  Google Scholar 

  • Sahoo, U. K., Tripathi, O. P., Nath, A. J., Deb, S., Das, D. J., Gupta, A., Devi, N. B., Charturvedi, S. S., Singh, S. L., Kumar, A., & Tiwari, B. K. (2021). Quantifying Tree Diversity, Carbon Stocks, and Sequestration Potential for Diverse Land Uses in Northeast India. Frontiers in Environmental Science, 9, 724950.

    Article  Google Scholar 

  • Sameer, M., Ramchandra, Mehera, B., Daniel, D., Sen, S., & Paliwal, H. (2015). Marketing strategies and limitation in agroforestry of india- perspectives. https://doi.org/10.13140/RG.2.1.4147.9921

  • Santiago-Freijanes, J. J., Pisanelli, A., Rois-Diaz, M., Aldrey-Vazquez, J. A., Rigueiro-Rodriguez, A., Pantera, A., et al. (2018). Agroforestry development in Europe: Policy issues. Land Use Policy, 76, 144–156.

    Article  Google Scholar 

  • Sarangle, S., Rajasekaran, A., Benbi, D. K., & Chauhan, S. (2018). Biomass and carbon stock, carbon sequestration potential under selected land use systems in Punjab. Forestry Research and Engineering: International Journal, 9, 75–80.

    Google Scholar 

  • Schipper, E. L. F. (2006). Conceptual history of adaptation in the UNFCCC process. The Review of European, Comparative & International Environmental Law, 15(1), 82–92.

    Article  Google Scholar 

  • Sharma, R., Chauhan, S. K., & Tripathi, A. M. (2016). Carbon sequestration potential in agroforestry system in India: An analysis for carbon project. Agroforestry Systems, 90(4), 631–644.

    Article  Google Scholar 

  • Sharma, P., Singh, M. K., Tiwari, P., & Verma, K. (2017). Agroforestry systems: Opportunities and challenges in India. Journal of Pharmacognosy and Phytochemistry, 1(sp), 953–957.

    Google Scholar 

  • Sukhdevb, P., Prabhua, R., Kumara, P., Bassic, A., Patwa-Shaha, W., Entersa, T., Labbatea, G., Greenwalta, J. (2015). REDD+ and a green economy: Opportunities for a mutually supportive relationship, UN-REDD Programme Policy Brief, Issue 01. https://theredddesk.org/sites/default/files/resources/pdf/2012/unep_policy_brief.pdf. Accessed 27 Oct 2021.

  • Siarudin, M., & Indrajaya, Y. (2014a). Struktur tegakan dan cadangan karbon hutan rakyat pola agroforestry manglid (Manglieta glauca Bl) di Tasikmalaya, Jawa Barat. Journal Penelitian Agroforestry, 2, 45–56.

    Google Scholar 

  • Siarudin, M., & Indrajaya, Y. (2014b). Dinamika cadangan karbon sistem agroforestri gmelina (Gmelina arborea roxb.) pada hutan rakyat di Tasikmalaya Dan Banjar, Jawa Barat. Journal Penelitian Agroforestry, 4, 37–46.

    Google Scholar 

  • Siarudin, M., Rahman, S. A., Artati, Y., Indrajaya, Y., Narulita, S., Ardha, M. J., & Larjavaara, M. (2021). Carbon Sequestration Potential of Agroforestry Systems in Degraded Landscapes in West Java Indonesia. Forests, 12(6), 714.

    Article  Google Scholar 

  • Siarudin, M. (2019). Traditional crop** pattern and management of home garden: Lesson learnt from Ciamis Regency, West Java Province, Indonesia. IOP Conference Series: Earth and Environmental Science, 250https://doi.org/10.1088/1755-1315/250/1/012043

  • Singh, B., & Singh, G. (2015). Biomass production and carbon stock in a silvi-horti based agroforestry system in arid region of Rajasthan. Indian Forester, 141(12), 1237–1243.

    Google Scholar 

  • Singh, S. L., Sahoo, U. K., Gogoi, A., & Kenye, A. (2018b). Effect of Land Use Changes on Carbon Stock Dynamics in Major Land Use Sectors of Mizoram, Northeast India. Journal of Environmental Protection, 9, 1262–1285.

    Article  CAS  Google Scholar 

  • Singh, M., Sridhar, K. B., Kumar, D., Dwivedi, R. P., Dev, I., Tewari, R. K. & O. P. C. (2018a). Agroforestry for doubling farmers’ income: a proven technology for trans-gangetic plains zone of India. Indian Farming, 68(1), 33–35.

  • Somarriba, E., Cerda, R., Orozco, L., Cifuentes, M., Davila, H., Espin, T., Mavisoy, H., Avila, G., Alvarado, E., Poveda, V., Astorga, C., Say, E., & Deheuvels, O. (2013). Carbon stocks and cocoa yields in agroforestry systems of Central America. Agriculture, Ecosystems & Environment, 173, 46–57.

    Article  Google Scholar 

  • Subbulakshmi, V., Sheetal, K. R., Renjith, P. S., Keerthika, A., & Gupta, D. K. (2018). NTFP based agroforestry to sustain income and employment generation activities of Arid regions of Rajasthan (pp. 291–324). Jaya Publishing House.

  • Sureshbhai, P. J., Thakur, N. S., Jha, S. K., & Kumar, V. (2017). Productivity and Carbon Sequestration under Prevalent Agroforestry Systems in Navsari District, Gujarat India. International Journal of Current Microbiology and Applied Sciences, 6(9), 3405–3422.

    Article  CAS  Google Scholar 

  • Tanwar, S. P. S., Kumar, P., Verma, A., Bhatt, R. K., Singh, A., Lal, K., Patidar, M., & Mathur, B. K. (2019). Carbon sequestration potential of agroforestry systems in the Indian arid zone. Current Science, 117(12), 1–9.

    Article  CAS  Google Scholar 

  • Thomas, C. D., & Lennon, J. J. (1999). Birds extend their ranges northwards. Nature, 399(6733), 213.

    Article  CAS  Google Scholar 

  • Toppo, P., & Raj, A. (2018). Role of agroforestry in climate change mitigation. Journal of Pharmacognosy and Phytochemistry, 7(2), 241–243.

    Google Scholar 

  • Toppo, P., Oraon, P. R., Singh, B. K., & Kumar, A. (2021). Biomass, productivity and carbon sequestration of Tectona grandis and Gmelina arborea-based silvipastoral system. Current Science, 121(12), 1594–1599.

    Article  CAS  Google Scholar 

  • Tsedeke, R. E., Dawud, S. M., & Tafere, S. M. (2021). Assessment of carbon stock potential of parkland agroforestry practice: The case of Minjar Shenkora; North Shewa Ethiopia. Environmental Systems Research, 10, 2.

    Article  Google Scholar 

  • Tsufac, A. R., Awazi, N. P., & Yerima, B. P. K. (2021). Characterization of agroforestry systems and their effectiveness in soil fertility enhancement in the south-west region of Cameroon. Current Research in Environmental Sustainability, 3, 100024.

    Article  Google Scholar 

  • Udawatta, P. R., Rankoth, L., & Jose, S. (2019). Agroforestry and Biodiversity. Sustainability, 11(10), 2879.

    Article  Google Scholar 

  • Varol, T., Cetin, M., Ozel, H. B., Sevik, H., & Zeren Cetin, I. (2022). The effects of climate change scenarios on Carpinus betulus and Carpinus orientalis in Europe. Water, Air, and Soil Pollution, 233(2), 45.

    Article  CAS  Google Scholar 

  • Viswanath, S., Lubina, P. A., Subbanna, S., & Sandhya, M. C. (2018). Traditional agroforestry systems and practices: A review. Advanced Agricultural Research and Technology Journal, 2(1), 18–29.

    Google Scholar 

  • Wang, Y., Bai, G., Shao, G., & Cao, Y. (2014). An analysis of potential investment returns and their determinants of poplar plantations in state-owned forest enterprises of China. New Forests, 45(2), 251–264.

    Article  Google Scholar 

  • Wardah, Toknok, B. & Zulkhaidah. (2011). Carbon Stock of Agroforestry Systems at Adjacent Buffer Zone of Lore Lindu National Park, Central Sulawesi. Journal of Tropical Soils 16(2), 123-128.

  • Wibawa, G., Hendratno, S., & Van Noordwijk, M. (2005). Permanent smallholder rubber agroforestry systems in Sumatra, Indonesia. In Slash and Burn Agriculture: The Search for Alternatives (pp. 222–232). Columbia University Press.

  • Wicke, B., Smeets, E. M. W., Akanda, R., Stille, L., Singh, R. K., Awan, A. R., Mahmood, K., & Faaij, A. P. C. (2013). Biomass production in agroforestry and forestry systems on salt-affected soils in South Asia: Exploration of the GHG balance and economic performance of three case studies. Journal of Environmental Management, 127, 324–334.

    Article  Google Scholar 

  • Wilson, B.R.S.A., & Daff, J.T. (2003). Australia’s state of the forests report. Department of Agriculture, Fisheries and Forestry, Govt. of Australia.

  • Yadava, A. K. (2010). Biomass production and carbon sequestration in different agroforestry systems in Tarai region of Central Himalaya. Indian Forester, 136(2), 234–244.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: B.G., E.M., and H.S.S. Validation, formal analysis, writing, rewriting: B.G., E.M., H.S.S., A.K.V., and S.K. Review, editing, and supervision: A.K.V. and S.K. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Amit Kumar Verma.

Ethics declarations

Ethics Approval

Not applicable.

Informed Consent

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghale, B., Mitra, E., Sodhi, H.S. et al. Carbon Sequestration Potential of Agroforestry Systems and Its Potential in Climate Change Mitigation. Water Air Soil Pollut 233, 228 (2022). https://doi.org/10.1007/s11270-022-05689-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05689-4

Keywords

Navigation