Log in

Appraisal of the Laboratory-Scale Tests for Bioleaching of Low-Grade Heavy Metal-(oid) s Resources

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Today, various methods such as bioleaching are increasingly used to remove toxic and reuse useful metals from low-grade ores and tailings. Bioleaching is an ecologically based technique carried by iron or sulfur-oxidizing bacteria, which convert insoluble metal sulfide to soluble metal sulfate. The purpose of this study was to test and compare two different methods, including Flask and Column experiments, to remove Zinc, Copper, Arsenic, and Iron. The materials were the same in both tests; inoculum came from the tailings of Neves-Corvo Mine, and the mineral sample was collected from Panasqueira Wolfram-Tin mine. Firstly, the cultures were tested for metal resistance and adapted by 3-day transference, adding sodium thiosulfate as an energy source supplement. Secondly, bioleaching tests were conducted in Flasks and Columns in 35 and 30 days, respectively. Finally, samples were taken to evaluate particle size, chemical compositions, bacterial growth, pH, oxidation–reduction potential (ORP), sulfate concentration, and metal content in the leachate. Besides, the Scanning Electron Microscope (SEM) pictures proved the existence of bacterial cells during the bioleaching tests. The results indicated that the Flask tests were superior to Column experiments in removing Zinc, Arsenic, and Copper from the mineral ore samples. However, Column experiments showed better results in the recovery of Iron in comparison with Flask tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • APHA. (1998). Standard methods for the examination of water and wastewater. American Public Health Association. American Water Works Association, Water Environmental Federation, 20th ed

  • Amiri, F., Yaghmaei, S., & Mousavi, S. (2011). Bioleaching of tungsten-rich spent hydrocracking catalyst using Penicillium simplicissimum. Bioresource Technology, 102(2), 1567–1573.

    Article  CAS  Google Scholar 

  • Ahmadi, A., Khezri, M., Abdollahzadeh, A., & Askari, M. (2015). Bioleaching of copper, nickel and cobalt from the low grade sulfidic tailing of Golgohar Iron Mine Iran. Hydrometallurgy, 154, 1–8.

    Article  CAS  Google Scholar 

  • Asif, Z., & Chen, Z. (2015). Environmental management in North American mining sector. Environmental Science and Pollution Research, 23(1), 167–179.

    Article  Google Scholar 

  • Bosecker, K. (1997). Bioleaching: Metal solubilization by microorganisms. FEMS Microbiology Reviews, 20(3–4), 591–604.

    Article  CAS  Google Scholar 

  • Basci, N., Kocadagistan, E., & Kocadagistan, B. (2004). Biosorption of Copper (II) from aqueous solutions by wheat shell. Desalination, 164(2), 135–140.

    Article  CAS  Google Scholar 

  • Batista, M., Abreu, M., & Pinto, M. (2007). Biogeochemistry in Neves Corvo mining region, Iberian Pyrite Belt Portugal. Journal of Geochemical Exploration, 92(2–3), 159–176.

    Article  CAS  Google Scholar 

  • Bai, J., **ao, R., Zhang, K., & Gao, H. (2012). Arsenic and heavy metal pollution in wetland soils from tidal freshwater and salt marshes before and after the flow-sediment regulation regime in the Yellow River Delta, China. Journal of Hydrology, 450–451, 244–253.

    Article  Google Scholar 

  • Brierley, C., & Brierley, J. (2013). Progress in bioleaching: Part B: Applications of microbial processes by the minerals industries. Applied Microbiology and Biotechnology, 97(17), 7543–7552.

    Article  CAS  Google Scholar 

  • Borja, D., Nguyen, K., Silva, R., Ngoma, E., Petersen, J., Harrison, S., Park, J. & Kim, H. (2019) Continuous bioleaching of arsenopyrite from mine tailings using an adapted mesophilic microbial culture. Hydrometallurgy, 187, pp.187–194.

  • Castro, I., Fietto, J., Vieira, R., Trópia, M., Campos, L., Paniago, E., & Brandão, R. (2000). Bioleaching of zinc and nickel from silicates using Aspergillus niger cultures. Hydrometallurgy, 57(1), 39–49.

    Article  CAS  Google Scholar 

  • Chopra, A., & Pathak, C. (2010). Biosorption technology for removal of metallic pollutants—An overview. Journal of Applied and Natural Science, 2(2), 318–329.

    Article  Google Scholar 

  • Coelho, P., Costa, S., Silva, S., Walter, A., Ranville, J., Sousa, A., Costa, C., Coelho, M., García-Lestón, J., Pastorinho, M., Laffon, B., Pásaro, E., Harrington, C., Taylor, A., & Teixeira, J. (2012). Metal(loid) levels in biological matrices from human populations exposed to mining contamination—Panasqueira Mine (Portugal). Journal of Toxicology and Environmental Health, Part A, 75(13–15), 893–908.

    Article  CAS  Google Scholar 

  • Candeias, C., Melo, R., Ávila, P., Ferreira da Silva, E., Salgueiro, A., & Teixeira, J. (2014). Heavy metal pollution in mine–soil–plant system in S. Francisco de Assis—Panasqueira mine (Portugal). Applied Geochemistry, 44, 12–26.

    Article  CAS  Google Scholar 

  • Das, S., & Hendry, M. (2011). Application of Raman spectroscopy to identify iron minerals commonly found in mine wastes. Chemical Geology, 290(3–4), 101–108.

    Article  CAS  Google Scholar 

  • Ehrlich, H., & Fox, S. (1967). Environmental effects on bacterial copper extraction from low-grade copper sulfide ores. Biotechnology and Bioengineering, 9(4), 471–485.

    Article  CAS  Google Scholar 

  • Fu, B., Zhou, H., Zhang, R., & Qiu, G. (2008). Bioleaching of chalcopyrite by pure and mixed cultures of Acidithiobacillus spp. and Leptospirillum ferriphilum. International Biodeterioration & Biodegradation, 62(2), 109–115.

    Article  CAS  Google Scholar 

  • Giaveno, A., Lavalle, L., Chiacchiarini, P., & Donati, E. (2007). Bioleaching of zinc from low-grade complex sulfide ores in an airlift by isolated Leptospirillum ferrooxidans. Hydrometallurgy, 89(1–2), 117–126.

    Article  CAS  Google Scholar 

  • Gomes, L., Moreira, J., Miranda, J., Simões, M., Melo, L., & Mergulhão, F. (2013). Macroscale versus microscale methods for physiological analysis of biofilms formed in 96-well microtiter plates. Journal of Microbiological Methods, 95(3), 342–349.

    Article  CAS  Google Scholar 

  • He, J., & Chen, J. (2014). A comprehensive review on biosorption of heavy metals by algal biomass: Materials, performances, chemistry, and modeling simulation tools. Bioresource Technology, 160, 67–78.

    Article  CAS  Google Scholar 

  • Hennebel, T., Boon, N., Maes, S., & Lenz, M. (2015). Biotechnologies for critical raw material recovery from primary and secondary sources: R&D priorities and future perspectives. New Biotechnology, 32(1), 121–127.

    Article  CAS  Google Scholar 

  • Home | ZINC. International Zinc Association. (2021). Home | ZINC. International zinc association. [online] Available at Zinc.org. Accessed 18 June 2021.

  • Kim, E., & Batchelor, B. (2009). Synthesis and characterization of pyrite (FeS2) using microwave irradiation. Materials Research Bulletin, 44(7), 1553–1558.

    Article  CAS  Google Scholar 

  • Liu, Y., Zhou, M., Zeng, G., Wang, X., Li, X., Fan, T., & Xu, W. (2008). Bioleaching of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria: Effects of substrate concentration. Bioresource Technology, 99(10), 4124–4129.

    Article  CAS  Google Scholar 

  • Leitão, P., Aulenta, F., Rossetti, S., Nouws, H., & Danko, A. (2018). Impact of magnetite nanoparticles on the syntrophic dechlorination of 1,2-dichloroethane. Science of the Total Environment, 624, 17–23.

    Article  Google Scholar 

  • Manning, B., Fendorf, S., Bostick, B., & Suarez, D. (2002). Arsenic(III) oxidation and arsenic(V) adsorption reactions on synthetic birnessite. Environmental Science & Technology, 36(5), 976–981.

    Article  CAS  Google Scholar 

  • Mulligan, C. (2004). Bioleaching of heavy metals from a low-grade mining ore using Aspergillus niger. Journal of Hazardous Materials, 110(1–3), 77–84.

    Article  CAS  Google Scholar 

  • Marhual, N., Pradhan, N., Kar, R., Sukla, L., & Mishra, B. (2008). Differential bioleaching of Copper by mesophilic and moderately thermophilic acidophilic consortium enriched from same copper mine water sample. Bioresource Technology, 99(17), 8331–8336.

    Article  CAS  Google Scholar 

  • Nguyen, V., Lee, M., Park, H., & Lee, J. (2015). Bioleaching of Arsenic and heavy metals from mine tailings by pure and mixed cultures of Acidithiobacillus spp. Journal of Industrial and Engineering Chemistry, 21, 451–458.

    Article  CAS  Google Scholar 

  • Noei, S., Sheibani, S., Rashchi, F., & Mirazimi, S. (2017). Kinetic modeling of copper bioleaching from low-grade ore from the Shahrbabak Copper Complex. International Journal of Minerals, Metallurgy, and Materials, 24(6), 611–620.

    Article  CAS  Google Scholar 

  • Olson, G. (1991). Rate of pyrite bioleaching by Thiobacillus ferrooxidans: Results of an interlaboratory comparison. Applied and Environmental Microbiology, 57(3), 642–644.

    Article  CAS  Google Scholar 

  • Pourreza, N., Rastegarzadeh, S., & Larki, A. (2014). Simultaneous preconcentration of Cd(II), Cu(II) and Pb(II) on nano-TiO2 modified with 2-mercaptobenzothiazole prior to flame atomic absorption spectrometric determination. Journal of Industrial and Engineering Chemistry, 20(5), 2680–2686.

    Article  CAS  Google Scholar 

  • Rawlings, D., Dew, D., & du Plessis, C. (2003). Biomineralization of metal-containing ores and concentrates. Trends in Biotechnology, 21(1), 38–44.

    Article  CAS  Google Scholar 

  • Rohwerder, T., Gehrke, T., Kinzler, K., & Sand, W. (2003). Bioleaching review part A. Applied Microbiology and Biotechnology, 63(3), 239–248.

    Article  CAS  Google Scholar 

  • Razo, I., Carrizales, L., Castro, J., Díaz-Barriga, F., & Monroy, M. (2004). Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water, Air, & Soil Pollution, 152(1–4), 129–152.

    Article  CAS  Google Scholar 

  • Sirisilla, M., Swamy, S. & Aatyam, K. (2021). Bioleaching: A promising method of selective leaching of metals. [online] Academia.edu. Available at: https://www.academia.edu/38311932/Bioleaching_A_Promising_Method_of_Selective_Leaching_of_Metals. Accessed 18 June 2021.

  • Song, Y., Wang, N. & Yu, A. (2019). Temporal and spatial evolution of global iron ore supply-demand and trade structure. Resources Policy, 64, 101506. https://doi.org/10.1016/j.resourpol.2019.101506.

  • Van Geen, A., Cheng, Z., Seddique, A., Hoque, M., Ahmed, K., Gelman, A., Graziano, J., Ahsan, H., & Parvez, F. (2005). Response to comment on “Reliability of a Commercial Kit to Test Groundwater for Arsenic in Bangladesh.” Environmental Science & Technology, 39(14), 5503–5504.

    Article  Google Scholar 

  • Wang, S., & Mulligan, C. (2009). Enhanced mobilization of Arsenic and heavy metals from mine tailings by humic acid. Chemosphere, 74(2), 274–279.

    Article  Google Scholar 

  • Ye, M., Li, G., Yan, P., Ren, J., Zheng, L., Han, D., Sun, S., Huang, S., & Zhong, Y. (2017). Removal of metals from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation. Chemosphere, 185, 1189–1196.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by The Portuguese Foundation for Science and Technology (FCT) through the projects ERA-MIN/0004/2015 “Recognition of microbial functional communities and assessment of the mineralizing potential (bioleaching) for high-tech critical metals—BioCriticalMetals”; PTDC/AAG-REC/3839/2014 “Biotools for a sustainable supply of tungsten from biodetection to bioleaching and biorecovery—PTW”; UID/EQU/00511/2019—Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), and Base Funding—UIDB/04028/2020 and Programmatic Funding—UIDP/04028/2020 of the Research Center for Natural Resources and Environment—CERENA—funded by national funds through the FCT/MCTES (PIDDAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parastou Sadeghi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, P., Diaz, A., Vila, M.C. et al. Appraisal of the Laboratory-Scale Tests for Bioleaching of Low-Grade Heavy Metal-(oid) s Resources. Water Air Soil Pollut 232, 258 (2021). https://doi.org/10.1007/s11270-021-05226-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05226-9

Keywords

Navigation