Log in

Using Prototy** to Minimise Remediation Costs: a Case Study on a Former Paint Factory

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Soils containing high concentrations of metals were treated using a soil washing process. The hypothesis was that metals could be concentrated in a single or small number of fine fractions which could be removed and disposed of to treat the contaminated soil. Lead and zinc were shown to be distributed over the > 4000, 2000–4000, 600–2000, 180–600, 38–180, 38–23, and < 9 µm soil size fractions. The study demonstrated that only one of four of the composites tested, generated a metal-rich fraction as a result of washing and soil fractionation. Using a scaling approach, with a laboratory prototype, this study demonstrates that lead and zinc contamination across the site were not able to be concentrated into any size fraction. Further, the metals could not be concentrated to any commercially viable extent to enable the development of a remediation strategy. The approach illustrated how costs can be contained in develo** full-scale remediation processes through using a staged process based on the principles of prototy** and scaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amin Chowdhury, K. I., Nurunnahar, S., Kabir, M. L., Islam, M. T., Baker, M., Islam, M. S., Rahman, M., Hasan, M. A., Sikder, A., Kwong, L. H., Binkhorst, G. K., Nash, E., Keith, J., McCartor, A., Luby, S. P. & Forsyth, J. E. (2021). Child lead exposure near abandoned lead acid battery recycling sites in a residential community in Bangladesh: Risk factors and the impact of soil remediation on blood lead levels. Environmental Researchhttps://doi.org/10.1016/j.envres.2020.110689

  • Aschengrau, A., Beiser, A., Bellinger, D., Copenhafer, D., & Weitzman, M. (1997). Residential lead-based-paint hazard remediation and soil lead abatement: Their impact among children with mildly elevated blood lead levels. American Journal of Public Health, 87, 1698–1702.

    Article  CAS  Google Scholar 

  • Bidar, G., Pelfrêne, A., Schwartz, C., Waterlot, C., Sahmer, K., Marot, F., & Douay, F. (2020). Urban kitchen gardens: Effect of the soil contamination and parameters on the trace element accumulation in vegetables – A review. Science of the Total Environment, 738, 139569.

    Article  CAS  Google Scholar 

  • Cheng, S., Lin, Q., Wang, Y., Luo, H., Huang, Z., Fu, H., Chen, H., & **ao, R. (2020). The removal of Cu, Ni, and Zn in industrial soil by washing with EDTA-organic acids. Arabian Journal of Chemistry, 13, 5160–5170.

    Article  CAS  Google Scholar 

  • Clark, H. F., Brabander, D. J., & Erdil, R. M. (2006). Sources, sinks, and exposure pathways of lead in urban garden soil. Journal of Environmental Quality, 35, 2066–2074.

    Article  CAS  Google Scholar 

  • Davis, A. P., & Hotha, B. V. (1998). Washing of various lead compounds from a contaminated soil column. Journal of Environmental Engineering (ASCE), 124, 1066–1075.

    Article  CAS  Google Scholar 

  • Dermont, G., Bergeron, M., Mercier, G. & Richer-LaFlèche, M. (2008). Metal-contaminated soils: Remediation practices and treatment technologies. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management. https://doi.org/10.1061/(ASCE)1090-025X(2008)12:3(188)

  • Eilmus, S., Rösch, C., & Bothe, H. (2007). Prokaryotic life in a potash-polluted marsh with emphasis on N-metabolizing microorganisms. Environmental Pollution, 146, 478–491.

    Article  CAS  Google Scholar 

  • Fabbricino, M., Ferraro, A., Luongo, V., Pontoni, L., & Race, M. (2018). Soil washing optimization, recycling of the solution, and ecotoxicity assessment for the remediation of Pb-contaminated sites using EDDS. Sustainability, 10, 636.

    Article  Google Scholar 

  • Feng, W., Zhang, S., Zhong, Q., Wang, G., Pan, X., Xu, X., Zhou, W., Li, T., Luo, L., & Zhang, Y. (2020). Soil washing remediation of heavy metal from contaminated soil with EDTMP and PAA: Properties, optimization, and risk assessment. Journal of Hazardous Materials, 381, 120997.

    Article  CAS  Google Scholar 

  • Frank, J. J., Poulakos, A. G., Tornero-Velez, R., & Xue, J. (2019). Systematic review and meta-analyses of lead (Pb) concentrations in environmental media (soil, dust, water, food, and air) reported in the United States from 1996 to 2016. Science of the Total Environment, 694, 133489.

    Article  CAS  Google Scholar 

  • Gailey, A. D., Schachter, A. E., Egendorf, S. P., & Mielke, H. W. (2020). Quantifying soil contamination and identifying interventions to limit health risks. Current Problems in Pediatric and Adolescent Health Care, 50, 100740.

    Article  Google Scholar 

  • Gooch, J. W. (2002). General analysis of lead-based paint (pp. 191–196). Kluwer Academic Publishers.

    Google Scholar 

  • Guerin, T. F. (2021). Prototy** of co-composting as a cost-effective treatment option for full-scale on-site remediation at a decommissioned refinery. Journal of Cleaner Production, 302, 127012.

    Article  CAS  Google Scholar 

  • Hazrati, S., Farahbakhsh, M., Heydarpoor, G., & Besalatpour, A. A. (2020). Mitigation in availability and toxicity of multi-metal contaminated soil by combining soil washing and organic amendments stabilization. Ecotoxicology and Environmental Safety, 201, 110807.

    Article  CAS  Google Scholar 

  • Kaurin, A., Gluhar, S., Tilikj, N., & Lestan, D. (2020). Soil washing with biodegradable chelating agents and EDTA: Effect on soil properties and plant growth. Chemosphere, 260, 127673.

    Article  CAS  Google Scholar 

  • Kim, N., Kwon, K., Park, J., Kim, J., & Choi, J.-W. (2019). Ex situ soil washing of highly contaminated silt loam soil using core-crosslinked amphiphilic polymer nanoparticles. Chemosphere, 224, 212–219.

    Article  CAS  Google Scholar 

  • Koh, D.-H., Locke, S. J., Chen, Y.-C., Purdue, M. P., & Friesen, M. C. (2015). Lead exposure in US worksites: A literature review and development of an occupational lead exposure database from the published literature. American Journal of Industrial Medicine, 58, 605–616.

    Article  Google Scholar 

  • Kumar, A., Cabral-Pinto, M., Kumar, A., Kumar, M., & Dinis, P. A. (2020a). Estimation of risk to the eco-environment and human health of using heavy metals in the Uttarakhand Himalaya, India. Applied Sciences, 10, 7078.

    Article  CAS  Google Scholar 

  • Kumar, A., Kumar, A., Cabral-Pinto, M. M. S., Chaturvedi, A. K., Shabnam, A. A., Subrahmanyam, G., Mondal, R., Gupta, D. K., Malyan, S. K., Kumar, S. S. A., Khan, S., & Yadav, K. K. (2020b). Lead toxicity: Health hazards, influence on food chain, and sustainable remediation approaches. International Journal of Environmental Research and Public Health, 17, 2179.

    Article  CAS  Google Scholar 

  • Kumar, A., Jigyasu, D. K., Kumar, A., Subrahmanyam, G., Mondal, R., Shabnam, A. A., Cabral-Pinto, M. M. S., Malyan, S. K., Chaturvedi, A. K., Gupta, D. K., Fagodiya, R. K., Khan, S. A., & Bhatia, A. (2021). Nickel in terrestrial biota: Comprehensive review on contamination, toxicity, tolerance and its remediation approaches. Chemosphere, 275, 129996.

    Article  CAS  Google Scholar 

  • Liu, L., Li, W., Song, W., & Guo, M. (2018). Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of the Total Environment, 633, 206–219.

    Article  CAS  Google Scholar 

  • Mao, X., Jiang, R., **ao, W., & Yu, J. (2015). Use of surfactants for the remediation of contaminated soils: A review. Journal of Hazardous Materials, 285C, 419–435.

    Article  Google Scholar 

  • Megertu, D. G., & Bayissa, L. D. (2020). Heavy metal contents of selected commercially available oil-based house paints intended for residential use in Ethiopia. Environmental Science and Pollution Research, 27, 17175–17183.

    Article  CAS  Google Scholar 

  • O’Brien, R. M., Phelan, T. J., Smith, N. M. & Smits, K. M. (2020). Remediation in develo** countries: A review of previously implemented projects and analysis of stakeholder participation efforts. Critical Reviews in Environmental Science and Technology, 51(12), 1–22. https://doi.org/10.1080/10643389.2020.175520

  • O’Connor, D., Hou, D., Ye, J., Zhang, Y., Ok, Y. S., Song, Y., Coulon, F., Peng, T., & Tian, L. (2018). Lead-based paint remains a major public health concern: A critical review of global production, trade, use, exposure, health risk, and implications. Environment International, 121, 85–101.

    Article  Google Scholar 

  • Ososkov, V., Gotlieb, E., Bozzelli, J. W., Gotlieb, I., & Stevenson, E. (1993). Removal of chromium from a highly contaminated soil/slag matrix by washing at low pH. International Journal of Environmental Studies, 44, 285–297.

    Article  CAS  Google Scholar 

  • Prasanna, R., Saxena, A. K., Jaiswal, P., & Nayak, S. (2006). Development of alternative support system for viable count of cyanobacteria by most probable number method. Folia Microbiologia (praha), 51, 455–458.

    Article  CAS  Google Scholar 

  • Rayment, G. E., & Higginson, F. R. (1992). Australian laboratory handbook of soil and water chemical methods. Port Melbourne Inkata Press.

    Google Scholar 

  • Schmidt, M., Crawford, R. H., & Warren-Myers, G. (2020). Integrating life-cycle GHG emissions into a building’s economic evaluation. Buildings and Cities, 1, 361–378.

    Article  Google Scholar 

  • Stace, H. C. T., Hubble, G. D., Brewer, R., Northcote, K. H., Sleeman, J. R., Mulcahy, M. J., & Hallsworth, E. G. (1968). A Handbook of Australian Soils. Rellim Technical Publications.

    Google Scholar 

  • Taylor, M. P., Isley, C. F., Fry, K. L., Liu, X., Gillings, M. M., Rouillon, M., Soltani, N. S., Gore, D. B., & Filippelli, G. M. (2021). A citizen science approach to identifying trace metal contamination risks in urban gardens. Environment International, 155, 106582.

    Article  CAS  Google Scholar 

  • Udell, K. S., Grubb, D. G., & Sitar, N. (1995). Technologies for in situ cleanup of contaminated sites. Central European Journal of Public Health, 3, 67–76.

    CAS  Google Scholar 

  • USEPA. (2014). Test methods for evaluating solid waste: Physical/chemical methods compendium (SW-846). United States Environemntal Protection Agency (USEPA).

    Google Scholar 

  • van Alphen, M. (1998). Paint film components, National Environmental Health Forum Monographs General Series No. 2, Adelaide.

  • Wang, Y., Ma, F., Zhang, Q., Peng, C., Wu, B., Li, F. & Gu, Q. (2017). 'An evaluation of different soil washing solutions for remediating arsenic-contaminated soils'. Chemosphere 173.

  • Wang, Z., Wang, H., Wang, H., Li, Q., & Li, Y. (2020). Effect of soil washing on heavy metal removal and soil quality: A two-sided coin. Ecotoxicology and Environmental Safety, 203, 110981.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turlough F. Guerin.

Ethics declarations

Conflict of Interest

The author declares that he did not have competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerin, T.F. Using Prototy** to Minimise Remediation Costs: a Case Study on a Former Paint Factory. Water Air Soil Pollut 232, 228 (2021). https://doi.org/10.1007/s11270-021-05187-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05187-z

Keywords

Navigation