Log in

Biosorbents from Tomato, Tangerine, and Maple Leaves for the Removal of Ciprofloxacin from Aqueous Media

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Ciprofloxacin is a fluoroquinolone antibiotic that is effective in vitro against Gram-positive and Gram-negative microorganisms. Since the ciprofloxacin, along with other pharmaceuticals, can influence the environment, the goal of this study was to examine the possibility of ciprofloxacin removal from water using biosorbents, an unconventional and cheaper subclass of adsorbents. For this purpose, the effect of ionic strength, pH, temperature, different mass of the used biosorbent, and physical-chemical characteristics of biosorbents on ciprofloxacin sorption was investigated. Biosorbents, used in this study, are the various waste products like maple leaves (ML), tangerine peel (TP), and tomato waste (TW) (seeds and peel). Sorption parameters of ciprofloxacin were determined by linear, Freundlich, and Dubinin-Radushkevich isotherms. The highest value of the sorption coefficient, Kd, shows the maple leaves, while the minimum achieves a sample of tangerine peel. These values correspond to the analysis and distribution of pore size, where the tangerine peel sample has the lowest specific surface area. The obtained results indicated the potential of investigated biosorbents to sorption of ciprofloxacin, which ultimately can contribute to environmental protection and the disposal of waste products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request

Code Availability

Not applicable

References

  • Ahmed, M. M., & Ahmed, S. S. (2008). A comparison study to determine the mean of particle size distribution for truthful characterization of environmental data (part 1). Journal of Engineering Sciences, 36, 147–166.

    Google Scholar 

  • Ahsan, M. A., Islam, M. T., Imam, M. A., Golam Hyder, A. H. M., Jabbari, V., Dominguez, N., & Noveron, J. C. (2018). Biosorption of bisphenol A and sulfamethoxazole from water using sulfonated coffee waste: Isotherm, kinetic, and thermodynamic studies. Journal of Environmental Chemical Engineering, 6, 6602–6611.

    Article  CAS  Google Scholar 

  • Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: A review. Process Biochemistry, 40, 997–1026.

    Article  CAS  Google Scholar 

  • Alnajrani, M. N., & Alsager, O. A. (2020). Removal of antibiotics from water by polymer of intrinsic microporosity: Isotherms, kinetics, thermodynamics, and adsorption mechanism. Nature Research, 10(1), 794.

    CAS  Google Scholar 

  • Babić, S., Biošić, M., & Škorić, I. (2013). Photolytic degradation of norfloxacin, enrofloxacin and ciprofloxacin in various aqueous media. Chemosphere, 91, 1635–1642.

    Article  Google Scholar 

  • Bajpai, S. K., Bajpai, M., & Rai, N. (2012). Sorptive removal of ciprofloxacin hydrochloride from simulated wastewater using sawdust: Kinetic study and effect of pH. Water SA, 38(5), 673–682.

    Article  CAS  Google Scholar 

  • Barišić, Z., Uropatogena Escherichia coli: Povezanost otpornosti na kinolone s prisutnošću činitelja virulencije, 2011., PhD disertation, School of Medicine, University of Zagreb.

  • Bekçi, Z., Seki, Y., & Yurdakoç, M. K. (2006). Equilibrium studies for trimethoprim adsorption on montmorillonite KSF. Journal of Hazardous Materials, 133(1-3), 233–242.

    Article  Google Scholar 

  • Brownawell, B. J., Chen, H., Collier, J. M., & Westall, J. C. (1990). Adsorption of organic cations to natural materials. Environmental Science & Technology, 24, 1234–1241.

    Article  CAS  Google Scholar 

  • Carabineiro, S. A. C., Thavorn-Amornsri, T., Pereira, M. F. R., & Figueiredo, J. L. (2011). Adsorption of ciprofloxacin on surface-modified carbon materials. Water Research, 45(15), 4583–4591.

    Article  CAS  Google Scholar 

  • Carmosini, N., & Lee, S. N. (2009). Ciprofloxacin sorption by dissolved organic carbon from reference and bio-waste material. Chemosphere, 77, 813–820.

    Article  CAS  Google Scholar 

  • Chen, H., Gao, B., Li, H., & Ma, L. Q. (2011). Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media. Journal of Contaminant Hydrology, 126, 29–36.

    Article  CAS  Google Scholar 

  • Dada, A. O., Olalekan, A. P., Olatunya, A. M., & Dada, O. (2012). Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR Journal of Applied Chemistry, 3, 38–45.

    Article  Google Scholar 

  • Das, B., & Mondal, N. K. (2011). Calcareous soil as a new adsorbent to remove lead from aqueous solution: Equilibrium, kinetic and thermodynamic study. Universal Journal of Environmental Research and Technology, 1, 515–530.

    CAS  Google Scholar 

  • De Gisi, S., Lofrano, G., Grassi, M., & Notarnicola, M. (2016). Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustainable Materials and Technologies, 9, 10–40.

    Article  Google Scholar 

  • Demirbas, A. (2008). Heavy metal adsorption onto agro-based waste materials: A review. Journal of Hazardous Materials, 157(2-3), 220–229.

    Article  CAS  Google Scholar 

  • Doretto, K. M., & Rath, S. (2013). Sorption of sulfadiazine on Brazilian soils. Chemosphere, 90, 2027–2034.

    Article  CAS  Google Scholar 

  • DrugBank. (n.d.). http://www.drugbank.ca/drugs/DB00537#properties (December 2019)

  • Đurović-Pejčev, R. (2011). Procesi koji određuju sudbinu pesticida u zemljištu. Pesticides & Phytomedicine, 26(1), 9–22.

    Google Scholar 

  • El-Sayed, H. E. M., & El-Sayed, M. M. H. (2014). Assessment of food processing and pharmaceutical industrial wastes as potential biosorbents: A review. BioMed Research International, 2014, 1–24.

    Article  Google Scholar 

  • El-Shafey, E. S. I., Al-Lawati, H., & Al-Sumri, A. S. (2012). Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets. Journal of Environmental Sciences, 24(9), 1579–1586.

    Article  CAS  Google Scholar 

  • Figueroa-Diva, R. A., Vasudevan, D., & MacKay, A. A. (2010). Trends in soil sorption coefficients within common antimicrobial families. Chemosphere, 79, 786–793.

    Article  CAS  Google Scholar 

  • Franco, A., & Trapp, S. (2008). Estimation of the soil-water partition coefficient normalized to organic carbon for ionisable organic chemicals. Environmental Toxicology and Chemistry, 27, 1995–2004.

    Article  CAS  Google Scholar 

  • Fries, E., Crouzet, C., Michel, C., & Togola, A. (2016). Interactions of ciprofloxacin (CIP), titanium dioxide (TiO2) nanoparticles and natural organic matter (NOM) in aqueous suspensions. The Science of the Total Environment, 563-564, 971–976.

    Article  CAS  Google Scholar 

  • Golet, E. M., **fra, I., Siegrist, H., Alder, A. C., & Giger, W. (2003). Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environmental Science & Technology, 37, 3243–3249.

    Article  CAS  Google Scholar 

  • group of authors, 2013. Environmental analytics, eds. Kaštelan-Macan, M. and Petrović, M., Faculty of Chemical Engineering and technology, Zagreb, Croatia, pp. 75.

  • Gu, C., & Karthikeyan, K. G. (2005). Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides. Environmental Science & Technology, 39, 9166–9173.

    Article  CAS  Google Scholar 

  • Halling-Sørensen, B., Holten Lützhøft, H. C., Andersen, H. R., & Ingerslev, F. (2000). Environmental risk assessment of antibiotics: Comparison of mecillinam, trimethoprim and ciprofloxacin. Journal of Antimicrobial Chemotherapy, 46, 53–58.

    Article  Google Scholar 

  • Hamdaoui, O., Saoudi, F., Chiha, M., & Naffrechoux, E. (2008). Sorption of malachite green by a novel sorbent, dead leaves of plane tree: Equilibrium and kinetic modeling. Chemical Engineering Journal, 143, 73–84.

    Article  CAS  Google Scholar 

  • Hassan, S. A., & Ali, F. J. (2014). Determination of kinetics, thermodynamics and equilibrium parameters of ciprofloxacin adsorption from aqueous solution onto wastes of spent black tea leaves and pomegranate peel. International Journal of Advanced Scientific and Technical Research, 2(4), 237–253.

    Google Scholar 

  • Hossain, A. (2013). Development of novel biosorbents in removing heavy metal from aqueous solution, disertation. Sydney: University of Technology.

    Google Scholar 

  • Hossain, A., Ngo, H. H., Guo, W., Zhang, J., & Liang, S. (2014). A laboratory study using maple leaves as a biosorbent for lead removal from aqueous solutions. Water Quality Research Journal of Canada, 49(3), 195–209.

    Article  CAS  Google Scholar 

  • Houtman, C. J. (2010). Emerging contaminants in surface waters and their relevance for the production of drinking water in Europe. Journal of Integrative Environmental Sciences, 7(4), 271–295.

    Article  Google Scholar 

  • Kaewsarn, P. (2002). Biosorption of copper (II) from aqueous solutions by pre-treated biomass of marine algae Padina sp. Chemosphere, 47(10), 1081–1085.

    Article  CAS  Google Scholar 

  • Kostich, M. S., Batt, A. L., & Lazorchak, J. M. (2014). Concentrations of prioritized pharmaceuticals in effluents from 50 large wastewater treatment plants in the US and implications for risk estimation. Environmental Pollution, 184, 354–359.

    Article  CAS  Google Scholar 

  • Kumar, P. S., Ramalingam, S., Senthamarai, C., Niranjanaa, M., Vijayalakshmi, P., & Sivanesan, S. (2010). Adsorption of dye from aqueous solution by cashew nut shell: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Desalination, 261(1-2), 52–60.

    Article  Google Scholar 

  • Kümmerer, K., 2004. Pharmaceuticals in the environment: Sources, fate, effects and risks, Springer, Second edition. pp 3-11.

  • Leal, R. M. P., Alleoni, L. R. F., Tornisielo, V. L., & Regitano, J. B. (2013). Sorption of fluoroquinolones and sulfonamides in 13 Brazilian soils. Chemosphere, 92, 979–985.

    Article  CAS  Google Scholar 

  • Li, Y., Taggart, M. A., McKenzie, C., Zhang, Z., Lu, Y., Pap, S., & Gibb, S. (2019). Utilizing low-cost natural waste for the removal of pharmaceuticals from water: Mechanisms, isotherms and kinetics at low concentrations. Journal of Cleaner Production, 227, 88–97.

    Article  CAS  Google Scholar 

  • Mac Kay, A. A., & Vasudevan, D. (2012). Polyfunctional ionogenic compound sorption: Challenges and new approaches to advance predictive models. Environmental Science & Technology, 46, 9209–9223.

    Article  CAS  Google Scholar 

  • Malakootian, M., Nasiri, A., & Gharaghani, M. A. (2019). Photocatalytic degradation of ciprofloxacin antibiotic by TiO2 nanoparticles immobilized on a glass plate. Chemical Engineering Communications, 207, 56–72.

    Article  Google Scholar 

  • Mckay, G. (1983). The adsorption of dyestuffs from aqueous solutions using activated carbon, III. Intraparticle diffusion process. Journal of Chemical Technology and Biotechnology, 33, 196–204.

    Article  Google Scholar 

  • Menk, J. D. J., do Nascimento, A. I. S., Leite, F. G., de Oliveira, R. A., Jozala, A. F., de Oliveira Junior, J. M., Chaud, M. V., & Grotto, D. (2019). Biosorption of pharmaceutical products by mushroom stem waste. Chemosphere, 237, 124515.

    Article  CAS  Google Scholar 

  • Mukaka, M. M. (2012). Statistics Corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Medical Journal, 24(3), 69–71.

    CAS  Google Scholar 

  • Mutavdžić Pavlović, D., Pinušić, T., Periša, M., & Babić, S. (2012). Optimization of matrix solid-phase dispersion for liquid chromatography tandem mass chromatography analysis of 12 pharmaceuticals in sediments. Journal of Chromatography A, 1258, 1–15.

    Article  Google Scholar 

  • Mutavdžić Pavlović, D., Ćurković, L., Grčić, I., Šimić, I., & Župan, J. (2017a). Isotherm, kinetic, and thermodynamic study of ciprofloxacin sorption on sediments. Environmental Science and Pollution Research, 24, 10091–10106.

    Article  Google Scholar 

  • Mutavdžić Pavlović, D., Ćurković, L., Macan, J., & Žižek, K. (2017b). Eggshell as a new biosorbent for the removal of pharmaceuticals from aqueous solutions. CLEAN – Soil, Air, Water, 45(12), 1–14.

    Article  Google Scholar 

  • Mutavdžić Pavlović, D., Glavač, A., Gluhak, M., & Runje, M. (2018). Sorption of albendazole in sediments and soils: Isotherms and kinetics. Chemosphere, 193, 635–644.

    Article  Google Scholar 

  • Najafi, H., Pajootan, E., Ebrahimi, A., & Mokhtar, A. (2016). The potential application of tomato seeds as low-cost industrial waste in the adsorption of organic dye molecules from colored effluents. Desalination and Water Treatment, 57, 15026–15036.

    Article  CAS  Google Scholar 

  • Ötker, H. M., & Akmehmet-Balcioǧlu, I. (2005). Adsorption and degradation of enrofloxacin, a veterinary antibiotic on natural zeolite. Journal of Hazardous Materials, 122, 251–258.

    Article  Google Scholar 

  • Panday, K. K., Prasad, G., & Singh, V. N. (1986). Use of wollastonite for the treatment of Cu (II) rich effluents. Water, Air, and Soil Pollution, 27(3), 287–296.

    Article  CAS  Google Scholar 

  • Pascual-Reguera, M. I., Perez Parras, G., & Molina Dıaz, A. (2004). Solid-phase UV spectrophotometric method for determination of ciprofloxacin. Microchemical Journal, 77, 79–84.

    Article  CAS  Google Scholar 

  • Peigney, A., Laurent, C., Flahaut, E., Bacsa, R., & Rousset, A. (2001). Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon, 39(4), 507–514.

    Article  CAS  Google Scholar 

  • Pham, T. D., Vu, T. N., Nguyen, H. L., Le, P. H. P., & Hoang, T. S. (2020). Adsorptive removal of antibiotic ciprofloxacin from aqueous solution using protein-modified danosilica. Polymers, 12(1), 57.

    Article  CAS  Google Scholar 

  • Polesel, F., Lehnberg, K., Dott, W., Trapp, S., Thomas, K. V., & Plósz, B. G. (2015). Factors influencing sorption of ciprofloxacin onto activated sludge: Experimental assessment and modelling implications. Chemosphere, 119, 105–111.

    Article  CAS  Google Scholar 

  • Rakshit, S., Sarkar, D., Elzinga, E. J., Punamiya, P., & Datta, R. (2013). Mechanisms of ciprofloxacin removal by nano-sized magnetite. Journal of Hazardous Materials, 246–247, 221–226.

    Article  Google Scholar 

  • Ramachandran, P., Vairamuthu, R., & Ponnusamy, S. (2011). Adsorption isotherms, kinetics, thermodynamics and desorption studies of reactive orange 16 on activated carbon derived from Ananas comosus (L.) carbon. ARPN Journal of Engineering and Applied Sciences, 6, 15–26.

    Google Scholar 

  • Ren, Y. M., Wei, X. Z., & Zhang, M. L. (2008). Adsorption character for removal Cu(II) by magnetic Cu(II) ion imprinted composite adsorbent. Journal of Hazardous Materials, 158(1), 14–22.

    Article  CAS  Google Scholar 

  • Ribeiro, G. C., Coelho, L. M., Oliviera, E., & Coelho, N. M. M. (2013). Removal of Cu (II) from ethanol fuel using mandarin peel as biosorbent. BioResources, 8(3), 3309–3321.

    Article  Google Scholar 

  • Shang, J. G., Kong, X. R., He, L. L., Li, W. H., & Liao, Q. J. H. (2016). Low-cost biochar derived from herbal residue: Characterization and application for ciprofloxacin adsorption. International journal of Environmental Science and Technology, 13, 2449–2458.

    Article  CAS  Google Scholar 

  • Souza, J. V. M. T., Diniz, K. M., Massocatto, C. L., Tarley, C. R. T., Caetano, J., & Dragunski, D. C. (2012). Removal of Pb (II) from aqueous solution with orange sub-products chemically modified as biosorbent. BioResources, 7(2), 2300–2318.

    Article  Google Scholar 

  • Ter Laak, T. I., Gebbink, W. A., & Tolls, J. (2006). Estimation of soil sorption coefficients of veterinary pharmaceuticals from soil properties. Environmental Toxicology and Chemistry, 25(4), 933–941.

    Article  Google Scholar 

  • Theivarasu, C., & Mylsamy, S. (2010). Equilibrium and kinetic adsorption studies of rhodamine-B from aqueous solutions using cocoa (Theobroma cacao) shell as a new adsorbent. International Journal of Engineering, Science and Technology, 2, 6284–6292.

    Google Scholar 

  • Tolić, K., Mutavdžić Pavlović, D., Židanić, D., & Runje, M. (2019). Nitrofurantoin in sediments and soils: Sorption, isotherms and kinetics. Science of the Total Environment, 681, 9–17.

    Article  Google Scholar 

  • Tor, A., & Cengeloglu, Y. (2006). Removal of congo red from aqueous solution by adsorption onto acid activated red mud. Journal of Hazardous Materials, 138(2), 409–415.

    Article  CAS  Google Scholar 

  • Tóth, J. (2000). Calculation of the BET-compatible surface area from any type I isotherms measured above the critical temperature. Journal of Colloid and Interface Science, 225(2), 378–383.

    Article  Google Scholar 

  • Tsezos, M., Remoudaki, E., & Angelatou, V. (1995). A systematic study on equilibrium and kinetics of biosorptive accumulation. The case of Ag and Ni. International Biodeterioration and Biodegradation, 35(1), 129–153.

    Article  CAS  Google Scholar 

  • Turku, I., Sainio, T., & Paatero, E. (2007). Thermodynamics of tetracycline adsorption on silica. Environmental Chemistry Letters, 5, 225–228.

    Article  CAS  Google Scholar 

  • Udovičić, M., Baždarić, K., Bilić-Zulle, L., & Petrovečki, M. (2007). What we need to know when calculating the coefficient of correlation? Biochemia Medica, 17, 10–15.

    Article  Google Scholar 

  • Urase, T., & Kikuta, T. (2005). Separate estimation of adsorption and degradation of pharmaceutical substances and estrogens in the activated sludge process. Water Research, 39, 1289–1300.

    Article  CAS  Google Scholar 

  • Van Doorslaer, X., Demeestere, K., & Heynderickx, P. M. (2011). UV-A and UV-C induced photolytic and photocatalytic degradation of aqueous ciprofloxacin and moxifloxacin: Reaction kinetics and role of adsorption. Applied Catalysts B: Environmental, 10, 540–547.

    Article  Google Scholar 

  • Vasudevan, D., Bruland, G. L., Torrance, B. S., Upchurch, V. G., & MacKay, A. A. (2009). pH-dependent ciprofloxacin sorption to soils: Interaction mechanisms and soil factors influencing sorption. Geoderma, 151, 68–76.

    Article  CAS  Google Scholar 

  • Vilar, V. J., Botelho, C., & Boaventura, R. A. (2007). Methylene blue adsorption by algal biomass based materials: Biosorbents characterization and process behaviour. Journal of Hazardous Materials, 147(1), 120–132.

    Article  CAS  Google Scholar 

  • Wang, C. J., Li, Z., Jiang, W. T., Jean, J. S., & Liu, C. C. (2010). Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite. Journal of Hazardous Materials, 183, 309–314.

  • Yu, F., Wu, Y., Li, X., & Ma, J. (2012). Kinetic and thermodynamic studies of toluene, ethylbenzene, and m-xylene adsorption from aqueous solutions onto KOH-activated multiwalled carbon nanotubes. Agric. Food Chem, 60, 12245–12253.

    Article  CAS  Google Scholar 

  • Zhang, H., **ong, C., Liu, F., Zheng, X., Jiang, J., Zheng, Q., & Yao, C. (2014). Optimization of conditions for Cu (II) adsorption on D151 resin from aqueous solutions using response surface methodology and its mechanism study. Water Science and Technology, 69, 2446–2451.

    Article  CAS  Google Scholar 

  • Zhuang, Y., Yu, F., & Ma, J. (2015). Enhanced adsorption and removal of ciprofloxacin on regenerable long TiO2 nanotube/graphene oxide hydrogel adsorbents. Journal of Nanomaterials, 2015, 1–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

KTexperimental work in laboratory; writing the manuscript

DMPwriting the manuscript

NSexperimental work in laboratory

MRanalysis on LC-MS/MS

All authors read and approved the final manuscript

Corresponding author

Correspondence to Dragana Mutavdžić Pavlović.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolić, K., Mutavdžić Pavlović, D., Stankir, N. et al. Biosorbents from Tomato, Tangerine, and Maple Leaves for the Removal of Ciprofloxacin from Aqueous Media. Water Air Soil Pollut 232, 218 (2021). https://doi.org/10.1007/s11270-021-05153-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05153-9

Keywords

Navigation