Log in

Sustainable Reuse of Char Waste for Oil Spill Recovery Foams

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The aim of this work is the employment of char waste in the synthesis of silicon foams for oil spill remediation and the comparison analysis with carbon nanotubes-filled foams. The foams are obtained by foaming a slurry constituted by a silicone matrix with CNT or char filler (7.7 wt%) in presence of a Sn-based catalyst. All the investigated materials present a foam morphology with an open/closed cell structure. Each foam was tested in three used common oils (kerosene, crude oil, and pump oil). Also, hydrophilic behavior of the foam was investigated. CNT showed a 700% sorption capacity in light oils (almost 7 goil/gfoam in kerosene); on the contrary, char foam evidenced the higher sorption efficiency in heavier oils; in particular, it reaches 130% in pump oil (1.3 goil/gfoam). All the filled foams are reusable. The reuse increases the foam efficiency and decreases the economic and environmental impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Figure 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aboul-Gheit. (2006). Adsorption of spilled oil from seawater by waste plastic. Oil & Gas Science and Technology-Rev. IFP, 61(2), 259–268.

    Article  CAS  Google Scholar 

  • Adebajo, M. O., Frost, R. L., Kloprogge, J. T., Carmody, O., & Kokot, S. (2003). Porous materials for oil spill cleanup: a review of synthesis and absorbing properties. Journal of Porous Materials, 10(3), 159–170.

    Article  CAS  Google Scholar 

  • Al-Majed, A. A., Adebayo, A. R., & Hossain, M. E. (2012). A sustainable approach to controlling oil spills. Journal of Environmental Management, 113, 213–227. https://doi.org/10.1016/j.jenvman.2012.07.034.

    Article  Google Scholar 

  • Baughman, R. H. (2002). Carbon nanotubes—the route toward applications. Science, 297(5582), 787–792. https://doi.org/10.1126/science.1060928.

    Article  CAS  Google Scholar 

  • Calabrese, L., Bonaccorsi, L., Freni, A., & Proverbio, E. (2017a). Silicone composite foams for adsorption heat pump applications. Sustainable Materials and Technologies, 12, 27–34. https://doi.org/10.1016/j.susmat.2017.04.002.

    Article  CAS  Google Scholar 

  • Calabrese, L., Bonaccorsi, L., Freni, A., & Proverbio, E. (2017b). Synthesis of SAPO-34 zeolite filled macrocellular foams for adsorption heat pump applications: a preliminary study. Applied Thermal Engineering, 124, 1312–1318. https://doi.org/10.1016/j.applthermaleng.2017.06.121.

    Article  CAS  Google Scholar 

  • Calabrese, L., Bonaccorsi, L., Bruzzaniti, P., Freni, A., & Proverbio, E. (2018). Morphological and functional aspects of zeolite filled siloxane composite foams. Journal of Applied Polymer Science, 135(2), 1–10. https://doi.org/10.1002/app.45683.

    Article  CAS  Google Scholar 

  • Choi, H. (1992). Natural sorbents in oil spill cleanup, 26(4), 772–776. doi:https://doi.org/10.1021/es00028a016.

  • Daling, P. S., & Strom, T. (1999). Weathering of oils at sea: model/field data comparisons. Spill Science & Technology Bulletin, 5(1), 63–74.

    Article  Google Scholar 

  • Fazio, E., Piperopoulos, E., Abdul Rahim, S. H., Lanza, M., Faggio, G., Mondio, G., et al. (2013). Correlation between carbon nanotube microstructure and their catalytic efficiency towards the p-coumaric acid degradation. Current Applied Physics, 13(4). https://doi.org/10.1016/j.cap.2012.11.016.

  • Graham, L. J., Hale, C., Maung-Douglass, E., Sempier, S., Swann, L., & Wilson, M. (2016). Oil spill science: Chemical dispersant and their role in oil spill response. MASGP-15-015.

  • Gui, X., Li, H., Wang, K., Wei, J., Jia, Y., Li, Z., et al. (2011). Recyclable carbon nanotube sponges for oil absorption. Acta Materialia, 59(12), 4798–4804. https://doi.org/10.1016/j.actamat.2011.04.022.

    Article  CAS  Google Scholar 

  • Guo, P., Saw, W. L., Van Eyk, P. J., Stechel, E. B., De Nys, R., Ashman, P. J., & Nathan, G. J. (2017). Gasification reactivity and physicochemical properties of the chars from raw and torrefied wood, grape marc, and macroalgae. Energy and Fuels, 31(3), 2246–2259. https://doi.org/10.1021/acs.energyfuels.6b02215.

    Article  CAS  Google Scholar 

  • Gupta, Vinod K., & Saleh, T. A. (2013). Sorption of pollutants by porous carbon, carbon nanotubes and fullerene- an overview. Environmental Science and Pollution Research. Springer. doi:https://doi.org/10.1007/s11356-013-1524-1.

  • Gupta, S., & Tai, N. H. (2016). Carbon materials as oil sorbents: a review on the synthesis and performance. Journal of Materials Chemistry A. Royal Society of Chemistry. https://doi.org/10.1039/c5ta08321d.

  • Gupta, Vinod Kumar, Ali, I., Saleh, T. A., Nayak, A., & Agarwal, S. (2012). Chemical treatment technologies for waste-water recycling - an overview. RSC Advances. Royal Society of Chemistry. doi:https://doi.org/10.1039/c2ra20340e.

  • Gupta, Vinod Kumar, Kumar, R., Nayak, A., Saleh, T. A., & Barakat, M. A. (2013). Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Advances in Colloid and Interface Science. Elsevier B.V. doi:https://doi.org/10.1016/j.cis.2013.03.003.

  • Gupta, S., Da He, W., & Tai, N. H. (2016). A comparative study on superhydrophobic sponges and their application as fluid channel for continuous separation of oils and organic solvents from water. Composites Part B: Engineering, 101, 99–106. https://doi.org/10.1016/j.compositesb.2016.06.002.

    Article  CAS  Google Scholar 

  • Kakhramanly, Y. N., & Azizov, A. G. (2014). Mechanism of crude oil and petroleum-product sorption from water surfaces by random polypropylene based polymer foam sorbents. Chemistry and Technology of Fuels and Oils, 49(6), 545–550. https://doi.org/10.1007/s10553-014-0482-8.

    Article  CAS  Google Scholar 

  • Messina, G., Modafferi, V., Santangelo, S., Tripodi, P., Donato, M. G., Lanza, M., et al. (2008). Large-scale production of high-quality multi-walled carbon nanotubes: role of precursor gas and of Fe-catalyst support. Diamond and Related Materials, 17, 1482–1488.

    Article  CAS  Google Scholar 

  • Milone, C., Piperopoulos, E., Ansari, S., Faggio, G., & Santangelo, S. (2015). Highly versatile and efficient process for CNT oxidation in vapor phase by means of Mg(NO3)-HNO3-H2O ternary mixture. Fullerenes, Nanotubes, and Carbon Nanostructures, 23(1), 1–5. https://doi.org/10.1080/1536383X.2013.858132.

    Article  CAS  Google Scholar 

  • Motta, F. L., Stoyanov, S. R., & Soares, J. B. P. (2018). Application of solidifiers for oil spill containment: a review. Chemosphere, 194, 837–846. https://doi.org/10.1016/j.chemosphere.2017.11.103.

    Article  CAS  Google Scholar 

  • Nartey, O. D., & Zhao, B. (2014). Biochar preparation, characterization, and adsorptive capacity and its effect on bioavailability of contaminants: an overview. Advances in Materials Science and Engineering, 2014, 1–12. https://doi.org/10.1155/2014/715398.

    Article  CAS  Google Scholar 

  • Nwadiogbu, J. O., Ajiwe, V. I. E., & Okoye, P. A. C. (2016). Removal of crude oil from aqueous medium by sorption on hydrophobic corncobs: equilibrium and kinetic studies, 10, 56–63.

  • Olga, V. R., Darina, V. I., Alexandr, A. I., & Alexandra, A. O. (2014). Cleanup of water surface from oil spills using natural sorbent materials. Procedia Chemistry, 10, 145–150. https://doi.org/10.1016/j.proche.2014.10.025.

    Article  CAS  Google Scholar 

  • Piperopoulos, E., Calabrese, L., Mastronardo, E., Proverbio, E., & Milone, C. (2018a). Synthesis of reusable silicone foam containing carbon nanotubes for oil spill remediation. Journal of Applied Polymer Science, 135, 46067–46078. https://doi.org/10.1002/app.46067.

    Article  CAS  Google Scholar 

  • Piperopoulos, E., Calabrese, L., Mastronardo, E., Rahim, S. H. A., Proverbio, E., & Milone, C. (2018b). Assessment of sorption kinetics of carbon nanotube-based composite foams for oil recovery application. Jounal of Applied Polymer Science. https://doi.org/10.1002/app.47374.

  • Ren, X., Chen, C., Nagatsu, M., & Wang, X. (2011). Carbon nanotubes as adsorbents in environmental pollution management: a review. Chemical Engineering Journal, 170, 395–410. https://doi.org/10.1016/j.cej.2010.08.045.

    Article  CAS  Google Scholar 

  • Sakthivel, T., Reid, D. L., Goldstein, I., Hench, L., & Seal, S. (2013). Hydrophobic high surface area zeolites derived from fly ash for oil spill remediation. Environmental Science & Technology, 47(11), 5843–5850. https://doi.org/10.1021/es3048174.

    Article  CAS  Google Scholar 

  • Saleem, J, Bazargan, A., Barford, J., & Mckay, G. (2014). Oil spill remedy using bi-axially oriented polymer films. In Water Pollution XII (pp. 145–152).

  • Saleem, J., Ning, C., Barford, J., & Mckay, G. (2015). Combating oil spill problem using plastic waste. Waste Management, 44, 34–38. https://doi.org/10.1016/j.wasman.2015.06.003.

    Article  CAS  Google Scholar 

  • Tewari, S., & Sirvaiya, A. (2015). Oil spill remediation and its regulation. International Journal Of Engineering Research and General Science, 1(6), 2394–8299.

    Google Scholar 

  • Worthington, M. J. H., J, S. C., J, E. L., A, C. J., T, G. C., K, L. S., et al. (2018). Sustainable polysulfides for oil spill remediation: repurposing industrial waste for environmental benefit. Advanced Sustainable Systems, 2(6), 1–7. https://doi.org/10.1002/adsu.201800024.

    Article  CAS  Google Scholar 

  • Yan, Q., Toghiani, H., Cai, Z., & Zhang, J. (2014). Formation of nanocarbon spheres by thermal treatment of woody char from fast pyrolysis process. Wood and Fiber Science, 46(4), 437–450.

    CAS  Google Scholar 

  • Zhao, X., Li, L., Li, B., Zhang, J., & Wang, A. (2014). Durable superhydrophobic/superoleophilic PDMS sponges and their applications in selective oil absorption and in plugging oil leakages. Journal of Materials Chemistry A, 2(43), 18281–18287. https://doi.org/10.1039/c4ta04406a.

    Article  CAS  Google Scholar 

  • Zheng Yongmei, Cheng Qunfeng, Hou Yong**, Y. C. (2015). Bio-inspired wettability surfaces: developments in micro- and nanostructures. https://www.crcpress.com/Bio-Inspired-Wettability-Surfaces-Developments-in-Micro%2D%2Dand-Nanostructures/Yongmei-Qunfeng-Yong**-Chen/p/book/9789814463607. Accessed 6 December 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Piperopoulos.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piperopoulos, E., Calabrese, L., Mastronardo, E. et al. Sustainable Reuse of Char Waste for Oil Spill Recovery Foams. Water Air Soil Pollut 231, 293 (2020). https://doi.org/10.1007/s11270-020-04671-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04671-2

Keywords

Navigation