Log in

Evaluation of Surfactant-Enhanced In Situ Chemical Oxidation (S-ISCO) in Contaminated Soil

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This work evaluated surfactant-enhanced in situ chemical oxidation (S-ISCO) in a hydrocarbon-contaminated soil. Surfactants and efficacy of oxidant activation as well as the treatability of contaminated soil were assessed. The surfactant VeruSOL-3 with a critical micelle concentration (CMC) of 5.5 g/L was selected. Based on the results, activated oxidations by sodium persulphate and hydrogen peroxide were able to effectively destroy target organic compounds in emulsion and soil. The destruction of total petroleum hydrocarbon (TPH) in emulsion was completed in 14 days and polycyclic aromatic hydrocarbons (PAHs) in excess of 96 %. Green nanoiron was much more active than other activators in emulsion. The data also indicates that oxidation using activators was much less pronounced in soil matrices. However, it is expected that given sufficient dose and treatment time, a higher destruction rate in the contaminated soil can be achieved. The study showed that the remediation of target organic contaminants (TPH, PAH) in soil by S-ISCO using activated sodium persulphate is feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Banerjee, D., Apollo, F. M., Ryabov, A. D., & Collins, T. J. (2009). The impact of surfactants on Fe(III)-TAML-catalyzed oxidations by peroxides: accelerations, decelerations, and loss of activity. Chemistry, 15(39), 10199–10209.

    Article  CAS  Google Scholar 

  • Baruwati, B., & Varma, R. S. (2009). High value products from waste: grape pomace extract—a three-in-one package for the synthesis of metal nanoparticles. Chemsuschem, 2(11), 1041–1044.

    Article  CAS  Google Scholar 

  • Crimi, M. L., & Taylor, J. (2007). Experimental evaluation of catalyzed hydrogen peroxide and sodium persulfate for destruction of BTEX contaminants. Soil & Sediment Contamination, 16(1), 29–45.

    Article  CAS  Google Scholar 

  • Dahmani, M., Huang, K., & Hoag, G. (2006). Sodium persulfate oxidation for the remediation of chlorinated solvents (USEPA Superfund Innovative Technology Evaluation Program). Water, Air, & Soil Pollution: Focus, 6(1), 127–141.

    CAS  Google Scholar 

  • Dugan, P. J., Siegrist, R. L., & Crimi, M. L. (2010). Coupling surfactants/cosolvents with oxidants for enhanced DNAPL removal: a review. Remediation Journal, 20(3), 27–49.

    Article  Google Scholar 

  • Fallis, I. A. P. C., Griffiths, T., Cosgrove, C. A., Dreiss, N., Govan, R. K., Heenan, et al. (2009). Locus-specific microemulsion catalysts for sulfur mustard (HD) chemical warfare agent decontamination. Journal of the American Chemical Society, 131(28), 9746–9755.

    Article  CAS  Google Scholar 

  • Ferrarese, E., Andreottola, G., & Oprea, I. A. (2008). Remediation of PAH-contaminated sediments by chemical oxidation. Journal of Hazardous Materials, 152(1), 128–139.

    Article  CAS  Google Scholar 

  • Fountain, J. C., Starr, R. C., Middleton, T., Beikirch, M., Taylor, C., & Hodge, D. (1996). A controlled field test of surfactant-enhanced aquifer remediation. Ground Water, 34(5), 910–916.

    Article  CAS  Google Scholar 

  • Häger, M., Olsson, U., & Holmberg, K. (2004). A nucleophilic substitution reaction performed in different types of self-assembly structures. Langmuir, 20(15), 6107–6115.

    Article  Google Scholar 

  • Hoag, G. E. & Collins, J. B. (2011). Soil remediation method and composition. US Patent No. 7976241B2.

  • Hoag, G. E., Collins, J. B., Holcomb, J. L., Hoag, J. R., Nadagoudab, M. N., & Varma, R. S. (2009). Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. Journal of Materials Chemistry, 19, 8671–8677.

    Article  CAS  Google Scholar 

  • Hoag, G. E., Collins, J. B., Varma, R. S., & Nadagoudab, M. N. (2011). Green synthesis of nanometals using plant extracts and use thereof. US Patent No. 8057682B2.

  • Huang, K.-C., Zhao, Z., Hoag, G. E., Dahmani, A., & Block, P. A. (2005). Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere, 61(4), 551–560.

    Article  CAS  Google Scholar 

  • Huh, C. (1979). Interfacial tensions and solubilizing ability of a microemulsion phase that coexists with oil and brine. Journal of Colloid and Interface Science, 71(2), 408–426.

    Article  CAS  Google Scholar 

  • Kanan, K., Yousef, H., & Kayali, I. (2012). Nanostructured microemulsion phase behavior using AOT or extended surfactant combined with a cationic hydrotrope. Journal of Surface Engineered Materials and Advanced Technology, 2, 53–60.

    Article  CAS  Google Scholar 

  • Li, F., Vipulanandan, C., & Mohanty, K. K. (2003). Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 223(1–3), 103–112.

    Article  CAS  Google Scholar 

  • Liang, C., & Bruell, C. J. (2008). Thermally activated persulfate oxidation of trichloroethylene: experimental investigation of reaction orders. Industrial and Engineering Chemistry Research, 47(9), 2912–2918.

    Article  CAS  Google Scholar 

  • Liang, C., Huang, C.-F., & Chen, Y.-J. (2008a). Potential for activated persulfate degradation of BTEX contamination. Water Research, 42(15), 4091–4100.

    Article  CAS  Google Scholar 

  • Liang, C., Huang, C.-F., Mohanty, N., & Kurakalva, R. M. (2008b). A rapid spectrophotometric determination of persulfate anion in ISCO. Chemosphere, 73(9), 1540–1543.

    Article  CAS  Google Scholar 

  • Liang, C. J., Bruell, C. J., Marley, M. C., & Sperry, K. L. (2003). Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries. Soil & Sediment Contamination, 12(2), 207.

    Article  CAS  Google Scholar 

  • Liu, S. H., Zhang, D. L., Yan, W., Puerto, M., Hirasaki, G. J., & Miller, C. A. (2008). Favorable attributes of alkaline-surfactant-polymer flooding. SPE Journal, 13(1), 5–16.

    Article  CAS  Google Scholar 

  • Nadagouda, M. N., Castle, A. B., Murdock, R. C., Hussain, S. M., & Varma, R. S. (2010). In vitro biocompatibility of nanoscale zerovalent iron particles (NZVI) synthesized using tea-polyphenols. Green Chemistry, 12(1), 114–122.

    Article  CAS  Google Scholar 

  • Nadagouda, M. N., Hoag, G., Collins, J. B., & Varma, R. S. (2009). Green synthesis of Au nanostructures at room temperature using biodegradable plant surfactants. Crystal Growth & Design, 9(11), 4979–4983.

    Article  CAS  Google Scholar 

  • Njagi, E., Huang, C. H., Stafford, L., Genuino, H., Galindo, H. M., Collins, J. B., et al. (2011). Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Cleanup 2011—4th International Contaminated Site Remediation Conference (Adelaide, Australia), pp. 71–72

  • von Sonntag, C. (2008). Advanced oxidation processes: mechanistic aspects. Water Science & Technology—WST, 58(5), 1015–1021.

    Article  Google Scholar 

  • Tsitonaki, A., Petri, B., Crimi, M., MosbÆK, H., Siegrist, R. L., & Bjerg, P. L. (2010). In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review. Critical Reviews in Environmental Science & Technology, 40(1), 55–91.

    Article  CAS  Google Scholar 

  • Zhang, W.-x. (2003). Nanoscale iron particles for environmental remediation: an overview. Journal of Nanoparticle Research, 5, 323–332.

    Article  CAS  Google Scholar 

  • Zhou, T., Li, Y., Ji, J., Wong, F.-S., & Lu, X. (2008). Oxidation of 4-chlorophenol in a heterogeneous zero valent iron/H2O2 Fenton-like system: kinetic, pathway and effect factors. Separation and Purification Technology, 62(3), 551–558.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Wei Hong Wang gratefully acknowledges CRC CARE (Australia) for funding this project. The author would also like to thank VeruTEK Company (USA) for the opportunity to co-work on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Naidu.

Additional information

Guest Editors: R Naidu, Euan Smith, MH Wong, Megharaj Mallavarapu, Nanthi Bolan, Albert Juhasz, and Enzo Lombi

This article is part of the Topical Collection on Remediation of Site Contamination

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W.H., Hoag, G.E., Collins, J.B. et al. Evaluation of Surfactant-Enhanced In Situ Chemical Oxidation (S-ISCO) in Contaminated Soil. Water Air Soil Pollut 224, 1713 (2013). https://doi.org/10.1007/s11270-013-1713-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1713-z

Keywords

Navigation