Log in

Recent Advances in Contaminated Site Remediation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1

References

  • Abriola, L. M., Drummond, C. D., Hahn, E. J., Hayes, K. F., Kibbey, T. C. G., Lemke, L. D., Pennell, K. D., Petrovskis, E. A., Ramsburg, C. A., & Rathfelder, K. M. (2005). Pilot-scale demonstration of surfactant-enhanced PCE solubilization at the Bachman Road site. 1. Site characterization and test design. Environmental Science and Technology, 39, 1778–1790.

    Article  CAS  Google Scholar 

  • Baú, D. A., & Mayer, A. S. (2008). Optimal design of pump-and-treat systems under uncertain hydraulic conductivity and plume distribution. Journal of Contaminant Hydrology, 100, 30–46.

    Article  Google Scholar 

  • Bento, F. M., Camargo, F. A. O., Okeke, B. C., & Frankenberger, W. T. (2005). Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresource Technology, 96, 1049–1055.

    Article  CAS  Google Scholar 

  • Bolan, N. S., & Duraisamy, V. P. (2003). Role of inorganic and organic soil amendments on immobilisation and phytoavailability of heavy metals: a review involving specific case studies. Soil Research, 41, 533–555.

    Article  CAS  Google Scholar 

  • Chambon, J. C., Broholm, M. M., Binning, P. J., & Bjerg, P. L. (2010). Modeling multi-component transport and enhanced anaerobic dechlorination processes in a single fracture–clay matrix system. Journal of Contaminant Hydrology, 112, 77–90.

    Article  CAS  Google Scholar 

  • Chapman, S. W., & Parker, B. L. (2005). Plume persistence due to aquitard back diffusion following dense nonaqueous phase liquid source removal or isolation. Water Resources Research, 41, W12411. doi:10.1029/2005WR004224.

  • Chien, Y. C. (2012). Field study of in situ remediation of petroleum hydrocarbon contaminated soil on site using microwave energy. Journal of Hazardous Materials, 199–200, 457–461.

    Article  Google Scholar 

  • Cohen, A. D., Rollins, M. S., Zunic, W. M., & Durig, J. R. (1991). Effects of chemical and physical differences in peats on their ability to extract hydrocarbons from water. Water Research, 25, 1047–1060.

    Article  CAS  Google Scholar 

  • Cundy, A. B., Hopkinson, L., & Whitby, R. L. D. (2008). Use of iron-based technologies in contaminated land and groundwater remediation: a review. Science of The Total Environment, 400, 42–51.

    Article  CAS  Google Scholar 

  • Cunningham, S. D., Anderson, T. A., Schwab, A. P., & Hsu, F. C. (1996). Phytoremediation of soils contaminated with organic pollutants. In L. S. Donald (Ed.), Advances in Agronomy (pp. 55–114). New York: Academic.

    Google Scholar 

  • Davis, G. B. (1997). Site clean-up—the pros and cons of disposal and in situ and ex situ remediation. Journal of Land Contamination and Reclamation, 5(4), 287–290.

    Google Scholar 

  • Davis, G.B., Johnston, C.D. (2004). Australian and international research and its implications for the risk based assessment and remediation of groundwater contamination. Enviro 04: Managing Contaminated Land, Sydney, 28 March-1 April 2004, Paper No. e4335, 12p.

  • Davis, G. B., Barber, C., Power, T. R., Thierrin, J., Patterson, B. M., Rayner, J. L., & Qinglong, W. (1999). The variability and intrinsic remediation of a BTEX plume in anaerobic sulphate-rich groundwater. Journal of Contaminant Hydrology, 36, 265–290.

    Article  CAS  Google Scholar 

  • Davis, G. B., Patterson, B. M., & Johnston, C. D. (2009). Aerobic bioremediation of 1,2 dichloroethane and vinyl chloride at field scale. Journal of Contaminant Hydrology, 107, 91–100.

    Article  CAS  Google Scholar 

  • Dermont, G., Bergeron, M., Mercier, G., & Richer-Laflèche, M. (2008). Soil washing for metal removal: A review of physical/chemical technologies and field applications. Journal of Hazardous Materials, 152, 1–31.

    Article  CAS  Google Scholar 

  • DTZ. 2010. Bioaccessibility Testing of Contaminated Land for Threats to Human Health: Summary of Impacts. Report prepared for the Natural Environment Research Council. http://www.nerc.ac.uk/business/casestudies/documents/bioaccessibility-report.pdf

  • Khan, F. I., Husain, T., & Hejazi, R. (2004). An overview and analysis of site remediation technologies. Journal of Environmental Management, 71, 95–122.

    Article  Google Scholar 

  • Falta, R.W. (2005). Dissolved chemical discharge from fractured clay aquitards contaminated with DNPALs Dynamic of Fluids and Transport in Fractured Rock. Geophysical Monograph, 162, (pp. 165–174). New York: American Geophysical Union.

  • Farhadian, M., Vachelard, C., Duchez, D., & Larroche, C. (2008). In situ bioremediation of monoaromatic pollutants in groundwater: a review. Bioresource Technology, 99, 5296–5308.

    Article  CAS  Google Scholar 

  • Ferguson, C., Darmendrail, D., Freier, K., Jensen, B.K., Jensen, J., Kasamas, H., Urzelai, A., & Vegter, J. (Editors). (1998). Risk Assessment for Contaminated Sites in Europe. Volume 1. Scientific Basis. LQM Press, Nottingham. http://www.commonforum.eu/Documents/DOC/Caracas/caracas_publ1.pdf

  • Ferguson, S. H., Woinarski, A. Z., Snape, I., Morris, C. E., & Revill, A. T. (2004). A field trial of in situ chemical oxidation to remediate long-term diesel contaminated Antarctic soil. Cold Regions Science and Technology, 40, 47–60.

    Article  Google Scholar 

  • Frank, U., & Barkley, N. (1995). Remediation of low permeability subsurface formations by fracturing enhancement of soil vapor extraction. Journal of Hazardous Materials, 40, 191–201.

    Article  CAS  Google Scholar 

  • Franzmann, P. D., Zappia, L., Tilbury, A. L., Patterson, B. M., Davis, G. B., & Mandelbaum, R. T. (2000). Bioaugmentation of atrazine and fenamiphos impacted groundwater: laboratory evaluation. Bioremediation Journal, 4(3), 237–248.

    Article  CAS  Google Scholar 

  • Franzmann, P. D., Zappia, L. R., Power, T. R., Davis, G. B., & Patterson, B. M. (1999). Microbial mineralisation of benzene and characterisation of microbial biomass in soil above hydrocarbon contaminated groundwater. FEMS Microbial Ecology, 30, 67–76.

    Article  CAS  Google Scholar 

  • Gerhardt, K. E., Huang, X. D., Glick, B. R., & Greenberg, B. M. (2009). Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Science, 176, 20–30.

    Article  CAS  Google Scholar 

  • Gibert, O., Pomierny, S., Rowe, I., & Kalin, R. M. (2008). Selection of organic substrates as potential reactive materials for use in a denitrification permeable reactive barrier (PRB). Bioresource Technology, 99, 7587–7596.

    Article  CAS  Google Scholar 

  • Gomez, E., Rani, D. A., Cheeseman, C. R., Deegan, D., Wise, M., & Boccaccini, A. R. (2009). Thermal plasma technology for the treatment of wastes: a critical review. Journal of Hazardous Materials, 161, 614–626.

    Article  CAS  Google Scholar 

  • Grieger, K. D., Fjordbøge, A., Hartmann, N. B., Eriksson, E., Bjerg, P. L., & Baun, A. (2010). Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? Journal of Contaminant Hydrology, 118, 165–183.

    Article  CAS  Google Scholar 

  • Guerin, T. F., Horner, S., McGovern, T., & Davey, B. (2002). An application of permeable reactive barrier technology to petroleum hydrocarbon contaminated groundwater. Water Research, 36, 15–24.

    Article  CAS  Google Scholar 

  • Harrison, B., Sudicky, E. A., & Cherry, J. A. (1992). Numerical-analysis of solute migration through fractured clayey deposits into underlying aquifers. Water Resources Research, 28(2), 515–526.

    Article  CAS  Google Scholar 

  • Higgins, M. R., & Olson, T. M. (2009). Life-cycle case study comparison of permeable reactive barrier versus pump-and-treat remediation. Environmental Science and Technology, 43, 9432–9438.

    Article  CAS  Google Scholar 

  • Johnston, C. D., & Desvignes, A. (2003). Evidence for biodegradation and volatilisation of dissolved petroleum hydrocarbons during in situ air sparging in large laboratory columns. Water, Air and Soil Pollution: Focus, 3, 25–33.

    Article  CAS  Google Scholar 

  • Johnston, C. D., Rayner, J. L., Patterson, B. M., & Davis, G. B. (1998). The contribution of volatilisation and biodegradation during air sparging of dissolved BTEX-contaminated groundwater. Journal of Contaminant Hydrology, 33(3–4), 377–404.

    Article  CAS  Google Scholar 

  • Jørgensen, K. S., Puustinen, J., & Suortti, A. M. (2000). Bioremediation of petroleum hydrocarbon-contaminated soil by composting in biopiles. Environmental Pollution, 107, 245–254.

    Article  Google Scholar 

  • Karn, B., Kuiken, T., & Otto, M. (2009). Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environmental Health Perspective, 117, 1813–1831.

    Google Scholar 

  • Knapp, R. B., & Faison, B. D. (1997). A bioengineering system for in situ bioremediation of contaminated groundwater. Journal of Industrial Microbiology and Biotechnology, 18, 189–197.

    Article  CAS  Google Scholar 

  • Krembs, F. J., Siegrist, R. L., Crimi, M. L., Furrer, R. F., & Petri, B. G. (2010). ISCO for groundwater remediation: analysis of field applications and performance. Groundwater Monitoring and Remediation, 30, 42–53.

    Article  Google Scholar 

  • Kumpiene, J., Ore, S., Renella, G., Mench, M., Lagerkvist, A., & Maurice, C. (2006). Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environmental Pollution, 144, 62–69.

    Article  CAS  Google Scholar 

  • Mackay, D. M., & Cherry, J. A. (1989). Groundwater contamination: pump-and-treat remediation. Environmental Science and Technology, 23, 630–636.

    Article  CAS  Google Scholar 

  • Megharaj, M., Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N., & Naidu, R. (2011). Bioremediation approaches for organic pollutants: a critical perspective. Environment International, 37, 1362–1375.

    Article  CAS  Google Scholar 

  • Mihopoulos, P. G., Suidan, M. T., Sayles, G. D., & Kaskassian, S. (2002). Numerical modeling of oxygen exclusion experiments of anaerobic bioventing. Journal of Contaminant Hydrology, 58, 209–220.

    Article  CAS  Google Scholar 

  • Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001a). Surfactant-enhanced remediation of contaminated soil: a review. Engineering Geology, 60, 371–380.

    Article  Google Scholar 

  • Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001b). Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering Geology, 1–4, 193–2007.

    Article  Google Scholar 

  • Naidu, R., & Bolan, N. S. (2008). Contaminant chemistry in soils: key concepts and bioavailability. In A. E. Hartemink & R. Naidu (Eds.), Chemical bioavailability in terrestrial environment (pp. 9–38). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Naidu, R., Kookana, R. S., Oliver, D., Rogers, S., & McLaughlin, M. J. (1996). Contaminants and the soil environment in the Australasia-Pacific region. Dordrecht: Kluwer.

    Book  Google Scholar 

  • Naidu, R., Megharaj, M., Malik, S., Rachakonda, P.K., Sreenivasulu, C., Perso, F., Watkin, N., Chen, Z., & Bowman, M. (2010). Monitored natural attenuation (MNA) as a cost-effective sustainable remediation technology for petroleum hydrocarbon contaminated sites: Demonstration of scientific evidence. Proceedings of the 19th World Congress of Soil Science: Soil solutions for a changing world, Brisbane, Australia, 1–6 August 2010. (pp. 3839). International Union of Soil Sciences (IUSS).

  • Naidu, R., Nandy, S., Megharaj, M., Kumar, R., Chadalavada, S., Chen, Z., & Bowman, M. (2012). Monitored natural attenuation of a long-term petroleum hydrocarbon contaminated sites: a case study. Biodegradation, 23(6), 881–895. doi:10.1007/s10532-012-9580-7.

    Google Scholar 

  • Naidu, R., Pollard, S. J. T., Bolan, N. S., Owens, G., & Pruszinski, A. W. (2008a). Bioavailability: the underlying basis for risk based land management. In A. E. Hartemink & R. Naidu (Eds.), Chemical bioavailability in terrestrial environment (pp. 53–72). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Naidu, R., Semple, K. T., Megharaj, M., Juhasz, A. L., Bolan, N. S., Gupta, S., Clothier, B., Schulin, R., & Chaney, R. (2008b). Bioavailability, definition, assessment and implications for risk assessment. In A. E. Hartemink & R. Naidu (Eds.), Chemical bioavailability in terrestrial environment (pp. 39–52). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Nathanail, C. P. (2009). The role of engineering geology in risk-based land contamination management for tomorrow’s cities. In M. G. Culshaw, H. J. Reeves, I. Jefferson, & T. Spink (Eds.), Engineering geology for tomorrow's cities, engineering geology special publication SPE 22. Bath: Geological Society.

    Google Scholar 

  • Nathanail, C. P., & Smith, R. (2007). Incorporating bioaccessibility in detailed quantitative human health risk assessments. Journal of Environmental Science and Health, Part A, 42, 1193–1202.

    Article  CAS  Google Scholar 

  • Ottosen, L. M., Hansen, H. K., Laursen, S., & Villumsen, A. (1997). Electrodialytic remediation of soil polluted with copper from wood preservation industry. Environmental Science and Technology, 31, 1711–1715.

    Article  CAS  Google Scholar 

  • Patterson, B. M., & Davis, G. B. (2008). An in situ device to measure oxygen in the vadose zone and in groundwater: laboratory testing and field evaluation. Groundwater Monitoring and Remediation, 28, 68–74.

    Article  CAS  Google Scholar 

  • Patterson, B. M., Grassi, M. E., Davis, G. B., Robertson, B. S., & McKinley, A. J. (2002). Use of polymer mats in series for sequential reactive barrier remediation of ammonium-contaminated groundwater: laboratory column evaluation. Environmental Science and Technology, 36, 3439–3445.

    Article  CAS  Google Scholar 

  • Patterson, B. M., Grassi, M. E., Robertson, B. S., Davis, G. B., Smith, A. J., & McKinley, A. J. (2004). Use of polymer mats in series for sequential reactive barrier remediation of ammonium-contaminated groundwater: field evaluation. Environmental Science and Technology, 38, 6846–6854.

    Article  CAS  Google Scholar 

  • Prommer, H., Barry, D. A., & Davis, G. B. (2002). Modelling of physical and reactive processes during biodegradation of a hydrocarbon plume under transient groundwater flow conditions. Journal of Contaminant Hydrology, 59, 113–131.

    Article  CAS  Google Scholar 

  • Pulford, I. D., & Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by trees—a review. Environment International, 29, 529–540.

    Article  CAS  Google Scholar 

  • Rayu, S., Karpouzas, D., & Singh, B. (2012). Emerging technologies in bioremediation: constraints and opportunities. Biodegradation, 23(6), 917–926. doi:10.1007/s10532-012-9576-3.

    Google Scholar 

  • Reynolds, D. A., & Kueper, B. H. (2002). Numerical examination of the factors controlling DNAPL migration through a single fracture. Groundwater, 40(4), 368–377.

    Article  CAS  Google Scholar 

  • Sarkar, B., Naidu, R., Rahman, M., Megharaj, M., & **, Y. (2012a). Organoclays reduce arsenic bioavailability and bioaccessibility in contaminated soils. Journal of Soils and Sediments, 12, 704–712.

    Article  CAS  Google Scholar 

  • Sarkar, B., **, Y., Megharaj, M., Krishnamurti, G. S. R., Bowman, M., Rose, H., & Naidu, R. (2012b). Bioreactive organoclay: a new technology for environmental remediation. Critical Reviews in Environmental Science and Technology, 42, 435–488.

    Article  CAS  Google Scholar 

  • Sarkar, D., Ferguson, M., Datta, R., & Birnbaum, S. (2005). Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environmental Pollution, 136, 187–195.

    Article  CAS  Google Scholar 

  • Schipper, L. A., & Vojvodić-Vuković, M. (2001). Five years of nitrate removal, denitrification and carbon dynamics in a denitrification wall. Water Research, 35, 3473–3477.

    Article  CAS  Google Scholar 

  • Semer, R., & Reddy, K. R. (1996). Evaluation of soil washing process to remove mixed contaminants from a sandy loam. Journal of Hazardous Materials, 45, 45–57.

    Article  CAS  Google Scholar 

  • Seol, Y., Zhang, H., & Schwartz, F. W. (2003). A review of in situ chemical oxidation and heterogeneity. Environmental and Engineering Geoscience, 9, 37–49.

    Article  Google Scholar 

  • Shah, J. K., Sayles, G. D., Suidan, M. T., Mihopoulos, P., & Kaskassian, S. (2001). Anaerobic bioventing of unsaturated zone contaminated with DDT and DNT. Water Science and Technology, 43, 35–42.

    CAS  Google Scholar 

  • Shrestha, R. A., Pham, T. D., & Sillanpää, M. (2009). Effect of ultrasound on removal of persistent organic pollutants (POPs) from different types of soils. Journal of Hazardous Materials, 170, 871–875.

    Article  CAS  Google Scholar 

  • Singh, B., & Naidu, R. (2012). Cleaning contaminated environment: a growing challenge. Biodegradation, 23(6), 785–786. doi:10.1007/s10532-012-9590-5.

    Google Scholar 

  • Singh, I. B., Chturveth, K., & Yegneswaran, A. H. (2007). Thermal immobilization of Cr, Cu and Zn of galvanising wastes in the presence of clay and fly ash. Environmental Technology, 28, 713–721.

    Article  CAS  Google Scholar 

  • Soares, A. A., Albergaria, J. T., Domingues, V. F., Alvim-Ferraz, M. C. M., & Delerue-Matos, C. (2010). Remediation of soils combining soil vapor extraction and bioremediation: benzene. Chemosphere, 80, 823–828.

    Article  CAS  Google Scholar 

  • Sunkara, B., Zhan, J., He, J., McPherson, G. L., Piringer, G., & John, V. T. (2010). Nanoscale zerovalent iron supported on uniform carbon microspheres for the in situ remediation of chlorinated hydrocarbons. ACS Applied Materials and Interfaces, 2, 2854–2862.

    Article  CAS  Google Scholar 

  • Swartjes, F. A. (1999). Risk-based assessment of soil and groundwater quality in the Netherlands: standards and remediation urgency. Risk Analysis, 19, 1235–1249.

    CAS  Google Scholar 

  • Taylor, T. P., Pennell, K. D., Abriola, L. M., & Dane, J. H. (2001). Surfactant enhanced recovery of tetrachloroethylene from a porous medium containing low permeability lenses: 1. Experimental studies. Journal of Contaminant Hydrology, 48, 325–350.

    Article  CAS  Google Scholar 

  • Thangavadivel, K., Megharaj, M., Smart, R., Lesniewski, P., Bates, D., & Naidu, R. (2011). Ultrasonic enhanced desorption of DDT from contaminated soils. Water, Air, and Soil Pollution, 217, 115–125.

    Article  CAS  Google Scholar 

  • Thangavadivel, K., Megharaj, M., Smart, R. S. C., Lesniewski, P. J., & Naidu, R. (2009). Application of high frequency ultrasound in the destruction of DDT in contaminated sand and water. Journal of Hazardous Materials, 168, 1380–1386.

    Article  CAS  Google Scholar 

  • Thiruvenkatachari, R., Vigneswaran, S., & Naidu, R. (2008). Permeable reactive barrier for groundwater remediation. Journal of Industrial and Engineering Chemistry, 14, 145–156.

    Article  CAS  Google Scholar 

  • USEPA. (1989). Evaluation of groundwater extraction remedies, 1–2. Washington, DC: EPA Office of Emergency and Remedial Responses.

    Google Scholar 

  • Warner, S.D. (2011). PRB for Contaminated Groundwater,” The Military Engineer, Society of American Military Engineers, Volume 104, No, 675, Page 53–54, January-February 2012

  • Warner, S. D. (2012). Permeable Reactive Barriers: advancing natural in-situ remediation for treatment of radionuclides in groundwater, radwaste solutions. American Nuclear Society, 18(14), 2011.

    Google Scholar 

  • Warner, S.D., Yamane C.L., Bice, N.T., Szerdy, F.S., Vogan, J., Major, D.W., Hankins D.A. (1994). The First Commercial Permeable Treatment Zone for VOCs. Proceedings of the First International Conference on Remediation of Chlorinated

  • Warner, S.D., Sorel, D. (2003) Ten Years of Permeable Reactive Barriers, Lessons Learned and Future Expectation. In Chlorinated Solvent and DNAPL Remediation: Innovative Strategies for Subsurface Cleanup, ACS Symposium Series 837, American Chemical Society, pp. 36–50.

  • Yeung, A. T. (2006). Contaminant extractability by electrokinetics. Environmental Engineering Science, 23, 202–224.

    Article  CAS  Google Scholar 

  • Yeung, A. T., & Gu, Y. Y. (2011). A review on techniques to enhance electrochemical remediation of contaminated soils. Journal of Hazardous Materials, 195, 11–29.

    Article  CAS  Google Scholar 

  • Zevenbergen, C., Honders, A., Orbons, A. J., Viaene, W., Swennen, R., Comans, R. N. J., & van Hasselt, H. J. (1997). Immobilisation of heavy metals in contaminated soils by thermal treatment at intermediate temperatures. In J. J. J. M. Goumans, G. J. Senden, & H. A. van der Sloot (Eds.), Studies in environmental science—waste materials in construction—putting theory into practice (pp. 661–673). New York: Elsevier.

    Google Scholar 

Download references

Acknowledgments

The financial support from CRC CARE for this work is gratefully acknowledged. Author also acknowledges excellent review comments from Drs Scott Warner, Greg Davis and Binoy Sarkar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Naidu.

Additional information

Guest Editors: R Naidu, Euan Smith, MH Wong, Megharaj Mallavarapu, Nanthi Bolan, Albert Juhasz, and Enzo Lombi

This article is part of the Topical Collection on Remediation of Site Contamination

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naidu, R. Recent Advances in Contaminated Site Remediation. Water Air Soil Pollut 224, 1705 (2013). https://doi.org/10.1007/s11270-013-1705-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1705-z

Keywords

Navigation