Log in

Removal of Anionic Pollutants from Waters and Wastewaters and Materials Perspective for Their Selective Sorption

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The presence of some anionic species, such as nitrate, nitrite, chloride, sulfide, fluoride, and cyanide, in water supplies may represent a serious environmental problem. In this work, the main sources and harmful effects of their bioaccumulation on living organisms are reviewed, as well as the most adopted technologies for their uptake. The major advantages and disadvantages of each methodology are also listed. In general, ion-exchange has been elucidated as the most suitable removal process. In view of that the most promising materials used to remove anionic pollutants from aqueous solutions are highlighted in this review. In particular, the major efforts towards the development of low-cost and easily available effective sorbents for water decontamination are covered. For instance, natural waste solid materials and derivatives have emerged as promising low-cost exchangers for selective anions uptake. Besides, a number of structural modifications including the introduction of more suitable surface functional groups or compensation species into the sorbent matrix have been investigated in order to enhance sorbents selectivity and capacity for anionic pollutants. The influence of speciation and removal conditions is also focused.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AC:

Activated carbon

C :

Concentration in solution

C 0 :

Initial concentration in solution

DWD:

European Drinking Water Directive

Fe(III)LECCA:

Fe(III)-loaded ligand exchange cotton cellulose adsorbent

GRM:

Granular red mud

LDHs:

Layered double hydroxides

MMO:

Mixed metal oxide

t :

Time

T :

Temperature

TAC:

Total anodic compartment

WHO:

World Health Organization

X :

Dimensionless concentration in solution

Y :

Dimensionless concentration in the solid phase

References

  • Afkhami, A., Madrakian, T., & Karimi, Z. (2007). The effect of acid treatment of carbon cloth on the adsorption of nitrite and nitrate ions. Journal of Hazardous Materials, 144(1–2), 427–431.

    Article  CAS  Google Scholar 

  • Arora, M., Eddy, N. K., Mumford, K. A., Baba, Y., Perera, J. M., & Stevens, G. W. (2010). Surface modification of natural zeolite by chitosan and its use for nitrate removal in cold regions. Cold Regions Science and Technology, 62(2–3), 92–97.

    Article  Google Scholar 

  • Ateya, B. G., AlKharafi, F. M., & Al-Azab, A. S. (2003). Electrodeposition of sulfur from sulfide contaminated brines. Electrochemical and Solid-State Letters, 6(9), C137–C140.

    Article  CAS  Google Scholar 

  • Behnamfard, A., & Salarirad, M. M. (2009). Equilibrium and kinetic studies on free cyanide adsorption from aqueous solution by activated carbon. Journal of Hazardous Materials, 170, 127–133.

    Article  CAS  Google Scholar 

  • Berbar, Y., Amara, M., & Kerdjoudj, H. (2008). Anion exchange resin applied to a separation between nitrate and chloride ions in the presence of aqueous soluble polyelectrolyte. Desalination, 223, 238–242.

    Article  CAS  Google Scholar 

  • Bhakat, P. B., Gupta, A. K., & Ayoob, S. (2007). Feasibility analysis of As(III) removal in a continuous flow fixed bed system by modified calcined bauxite (MCB). Journal of Hazardous Materials, 139(2), 286–292.

    Article  CAS  Google Scholar 

  • Bhatnagar, A., Ji, M., Choi, Y. H., Jung, W., Lee, S. H., Kim, S. J., et al. (2008). Removal of nitrate from water by adsorption onto zinc chloride treated activated carbon. Separation Science and Technology, 43(4), 886–907.

    Article  CAS  Google Scholar 

  • Biçak, N., & Filiz Şenkal, B. (1998). Removal of nitrite ions from aqueous solutions by cross-linked polymer of ethylenediamine with epichlorohydrin. Reactive and Functional Polymers, 36(1), 71–77.

    Article  Google Scholar 

  • Biswas, K., Gupta, K., Goswami, A., & Ghosh, U. C. (2010). Fluoride removal efficiency from aqueous solution by synthetic iron(III)-aluminum (III)-chromium(III) ternary mixed oxide. Desalination, 255, 44–51.

    Article  CAS  Google Scholar 

  • Bogoczek, R., Kociolek-Balawejder, E., & Stanislawska, E. (2006). A macromolecular oxidant, the N,N-dichlorosulfonamide for removal of residual nitrites from aqueous media. Reactive and Functional Polymers, 66(6), 609–617.

    Article  CAS  Google Scholar 

  • Bulusu, K. R., & Nawlakhe, W. G. (1988). Defluoridation of water with activated alumina: batch operations. Indian Journal of Environmental Health, 30(3), 262–299.

    CAS  Google Scholar 

  • Camel, V. (2003). Solid phase extraction of trace elements. Spectrochimica Acta: Part B Atomic Spectroscopy, 58(7), 1177–1233.

    Article  CAS  Google Scholar 

  • Carmona, M., Perez, A., de Lucas, A., Rodriguez, L., & Rodriguez, J. F. (2008). Removal of chloride ions from an industrial polyethylenimine flocculant shifting it into an adhesive promoter using the anion exchange resin Amberlite IRA-420. Reactive and Functional Polymers, 68, 1218–1224.

    Article  CAS  Google Scholar 

  • Chabani, M., & Bensmaili, A. (2005). Kinetic modelling of the retention of nitrates by Amberlite IRA 410. Desalination, 185(1–3), 509–515.

    Article  CAS  Google Scholar 

  • Chabani, M., Amrane, A., & Bensmaili, A. (2006). Kinetic modelling of the adsorption of nitrates by ion exchange resin. Chemical Engineering Journal, 125, 111–117.

    Article  CAS  Google Scholar 

  • Chanda, M., & Rempel, G. L. (1995). Sorption of sulfide on a macroporous, quaternized poly(4-vinyl pyridine) in alkaline medium. Reactive Polymers, 24, 203–212.

    Article  CAS  Google Scholar 

  • Chatterjee, S., & Woo, S. H. (2009). The removal of nitrate from aqueous solutions by chitosan hydrogel beads. Journal of Hazardous Materials, 164(2–3), 1012–1018.

    Article  CAS  Google Scholar 

  • Chen, G. (2004). Electrochemical technologies in wastewater treatment. Separation and Purification Technology, 38(1), 11–41.

    Article  CAS  Google Scholar 

  • Cheng, I. F., Muftikian, R., Fernando, Q., & Korte, N. (1997). Reduction of nitrate to ammonia by zero-valent iron. Chemosphere, 35(11), 2689–2695.

    Article  CAS  Google Scholar 

  • Cheng, X. W., Zhong, Y., Wang, J., Guo, J., Huang, Q., & Long, Y. C. (2005). Studies on modification and structural ultra-stabilization of natural STI zeolite. Microporous and Mesoporous Materials, 83(1–3), 233–243.

    Article  CAS  Google Scholar 

  • Cumbal, L., Greenleaf, J., Leun, D., & SenGupta, A. K. (2003). Polymer supported inorganic nanoparticles: characterization and environmental applications. Reactive and Functional Polymers, 54(1–3), 167–180.

    Article  CAS  Google Scholar 

  • Dabrowski, A., Hubicki, Z., Podkoscielny, P., & Robens, E. (2004). Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere, 56(2), 91–106.

    Article  CAS  Google Scholar 

  • Dai, X., & Breuer, P. L. (2009). Cyanide and copper cyanide recovery by activated carbon. Minerals Engineering, 22, 469–476.

    Article  CAS  Google Scholar 

  • Daifullah, A. A. M., Yakout, S. M., & Elreefy, S. A. (2007). Adsorption of fluoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw. Journal of Hazardous Materials, 147, 633–643.

    Article  CAS  Google Scholar 

  • Das, D. P., Das, J., & Parida, K. (2003). Physicochemical characterization and adsorption behavior of calcined Zn/Al hydrotalcite-like compound (HTlc) towards removal of fluoride from aqueous solution. Journal of Colloid and Interface Science, 261(2), 213–220.

    Article  CAS  Google Scholar 

  • Das, N., Pattanaik, P., & Das, R. (2005). Defluoridation of drinking water using activated titanium rich bauxite. Journal of Colloid and Interface Science, 292(1), 1–10.

    Article  CAS  Google Scholar 

  • Dash, R. R., Gaur, A., & Balomajumder, C. (2009). Review cyanide in industrial wastewaters and its removal: a review on biotreatment. Journal of Hazardous Materials, 163, 1–11.

    Article  CAS  Google Scholar 

  • de Heredia, J. B., Dominguez, J. R., Cano, Y., & Jimenez, I. (2006). Nitrate removal from groundwater using Amberlite IRN-78: Modelling the system. Applied Surface Science, 252, 6031–6035.

    Article  CAS  Google Scholar 

  • Deganello, F., Liotta, L. F., Macaluso, A., Venezia, A. M., & Deganello, G. (2000). Catalytic reduction of nitrates and nitrites in water solution on pumice-supported Pd–Cu catalysts. Applied Catalysis B: Environmental, 24(3–4), 265–273.

    Article  CAS  Google Scholar 

  • DeMarco, M. J., SenGupta, A. K., & Greenleaf, J. E. (2003). Arsenic removal using a polymeric/inorganic hybrid sorbent. Water Research, 37(1), 164–176.

    Article  CAS  Google Scholar 

  • Deveci, H., Yazıcı, E. Y., Alp, I., & Uslu, T. (2006). Removal of cyanide from aqueous solutions by plain and metal-impregnated granular activated carbons. International Journal of Mineral Processing, 79, 198–208.

    Article  CAS  Google Scholar 

  • Dubey, S. K., & Holmes, D. S. (1995). Biological cyanide destruction mediated by microorganisms. World Journal of Microbiology and Biotechnology, 11(3), 257–265.

    Article  CAS  Google Scholar 

  • Durmaz, F., Kara, H., Cengeloglu, Y., & Ersoz, M. (2005). Fluoride removal by Donnan dialysis with anion exchange membranes. Desalination, 177(1–3), 51–57.

    Article  CAS  Google Scholar 

  • Dutta, P. K., Rabaey, K., Yuan, Z., & Keller, J. (2008). Spontaneous electrochemical removal of aqueous sulfide. Water Research, 42(20), 4965–4975.

    Article  CAS  Google Scholar 

  • Dutta, P. K., Rabaey, K., Yuan, Z., Rozendal, R. A., & Keller, J. (2010). Electrochemical sulfide removal and recovery from paper mill anaerobic treatment effluent. Water Research, 44, 2563–2571.

    Article  CAS  Google Scholar 

  • Erdem, M., Altundogan, H. S., & Tumen, F. (2004). Removal of hexavalent chromium by using heat-activated bauxite. Minerals Engineering, 17(9–10), 1045–1052.

    Article  CAS  Google Scholar 

  • Ettouney, H. M., El-Dessouky, H. T., Faibish, R. S., & Gowin, P. J. (2002). Evaluating the economics of desalination. Chemical Engineering Progress, 98(12), 32–39.

    CAS  Google Scholar 

  • Fan, X., Parker, D. J., & Smith, M. D. (2003). Adsorption kinetics of fluoride on low cost materials. Water Research, 37, 4929–4937.

    Article  CAS  Google Scholar 

  • Ganczarczyk, J. J., Takoaka, P. T., & Ohashi, D. A. (1985). Application of polysulfide for pretreatment of spent cyanide liquors. Journal of the Water Pollution Control Federation, 57(11), 1089–1093.

    CAS  Google Scholar 

  • Gao, W., Chen, J., Guan, X., **, R., Zhang, F., & Guan, N. (2004). Catalytic reduction of nitrite ions in drinking water over Pd–Cu/TiO2 bimetallic catalyst. Catalysis Today, 93–95, 333–339.

    Article  CAS  Google Scholar 

  • Gao, B.-Y., Xu, X., Wang, Y., Yue, Q.-Y., & Xu, X.-M. (2009). Preparation and characteristics of quaternary amino anion exchanger from wheat residue. Journal of Hazardous Materials, 165(1–3), 461–468.

    Article  CAS  Google Scholar 

  • Gärtner, R. S., & Witkamp, G. J. (2005). Regeneration of mixed solvent by ion exchange resin: selective removal of chloride and sulfate. Separation Science and Technology, 40(12), 2391–2410.

    Article  CAS  Google Scholar 

  • Gärtner, R. S., Wilhelm, F. G., Witkamp, G. J., & Wessling, M. (2005). Regeneration of mixed solvent by electrodialysis: selective removal of chloride and sulfate. Journal of Membrane Science, 250, 113–133.

    Article  CAS  Google Scholar 

  • Guan, H. D., Bestland, E., Zhu, C. Y., Zhu, H. L., Albertsdottir, D., Hutson, J., et al. (2010). Variation in performance of surfactant loading and resulting nitrate removal among four selected natural zeolites. Journal of Hazardous Materials, 183(1–3), 616–621.

    Article  CAS  Google Scholar 

  • Guo, Z., Zheng, Z., Gu, C., & Zheng, Y. (2008). Gamma irradiation-induced removal of low-concentration nitrite in aqueous solution. Radiation Physics and Chemistry, 77(6), 702–707.

    Article  CAS  Google Scholar 

  • Hichour, M., Persin, F., Sandeaux, J., & Gavach, C. (2000). Fluoride removal from waters by Donnan dialysis. Separation and Purification Technology, 18, 1–11.

    Article  CAS  Google Scholar 

  • Honn, K. V., & Chavin, W. (1976). Utility of ozone treatment in the maintenance of water quality in a closed marine system. Marine Biology, 34(3), 201–209.

    Article  CAS  Google Scholar 

  • Hradil, J., Králová, E., & Benes, M. J. (1997). Methacrylate anion exchangers with enhanced affinity for nitrates. Reactive and Functional Polymers, 33, 263–273.

    Article  CAS  Google Scholar 

  • Hu, H.-Y., Goto, N., & Fujie, K. (2001). Effect of ph on the reduction of nitrite in water by metallic iron. Water Research, 35(11), 2789–2793.

    Article  CAS  Google Scholar 

  • Islam, M., & Patel, R. (2010). Synthesis and physicochemical characterization of Zn/Al chloride layered double hydroxide and evaluation of its nitrate removal efficiency. Desalination, 256, 120–128.

    Article  CAS  Google Scholar 

  • Kabay, N., Arar, O., Samatya, S., Yuksel, U., & Yuksel, M. (2008). Separation of fluoride from aqueous solution by electrodialysis: effect of process parameters and other ionic species. Journal of Hazardous Materials, 153(1–2), 107–113.

    Article  CAS  Google Scholar 

  • Kagne, S., Jagtap, S., Dhawade, P., Kamble, S. P., Devotta, S., & Rayalu, S. S. (2008). Hydrated cement: a promising adsorbent for the removal of fluoride from aqueous solution. Journal of Hazardous Materials, 154, 88–95.

    Article  CAS  Google Scholar 

  • Kameda, T., Miyano, Y., Yoshioka, T., Uchida, M., & Okuwaki, A. (2000). New treatment methods for waste water containing chloride ion using magnesium-aluminum oxide. Chemistry Letters, 10, 1136–1137.

    Article  Google Scholar 

  • Kameda, T., Yabuuchi, F., Yoshioka, T., Uchida, M., & Okuwaki, A. (2003a). New method of treating dilute mineral acids using magnesium-aluminum oxide. Water Research, 37(7), 1545–1550.

    Article  CAS  Google Scholar 

  • Kameda, T., Yoshioka, T., Mitsuhashi, T., Uchida, M., & Okuwaki, A. (2003b). The simultaneous removal of calcium and chloride ions from calcium chloride solution using magnesium–aluminum oxide. Water Research, 37, 4045–4050.

    Article  CAS  Google Scholar 

  • Kenfield, C. F., Qin, R., Semmens, M. J., & Cussler, E. L. (1988). Cyanide recovery across hollow fiber gas membranes. Environmental Science and Technology, 22(10), 1151–1155.

    Article  CAS  Google Scholar 

  • Khani, A., & Mirzaei, M. (2008). Comparative study of nitrate removal from aquous solution using powder activated carbon and carbon nanotubes. Paper presented at the 2nd International IUPAC Conference in Green Chemistry.

  • Kim, J., & Benjamin, M. M. (2004). Modeling a novel ion exchange process for arsenic and nitrate removal. Water Research, 38, 2053–2062.

    Article  CAS  Google Scholar 

  • Kim, Y., Kim, C., Choi, I., Rengaraj, S., & Yi, J. (2004). Arsenic removal using mesoporous alumina prepared via a templating method. Environmental Science and Technology, 38(3), 924–931.

    Article  CAS  Google Scholar 

  • Krüner, G., & Rosenthal, H. (1983). Efficiency of nitrification in trickling filters using different substrates. Aquacultural Engineering, 2(1), 49–67.

    Article  Google Scholar 

  • Lahnid, S., Tahaikt, M., Elaroui, K., Idrissi, I., Hafsi, M., Laaziz, I., et al. (2008). Economic evaluation of fluoride removal by electrodialysis. Desalination, 230(1–3), 213–219.

    Article  CAS  Google Scholar 

  • Lehman, S. G., Badruzzaman, M., Adham, S., Roberts, D., & Clifford, D. A. (2008). Perchlorate and nitrate treatment by ion exchange integrated with biological brine treatment. Water Research, 42, 969–976.

    Article  CAS  Google Scholar 

  • Li, J., Qiu, J., Sun, Y. J., & Long, Y. C. (2000). Studies on natural STI zeolite: modification, structure, adsorption and catalysis. Microporous and Mesoporous Materials, 37(3), 365–378.

    Article  CAS  Google Scholar 

  • Lin, S. H., & Wu, C. L. (1996). Removal of nitrogenous compounds from aqueous solution by ozonation and ion exchange. Water Research, 30(8), 1851–1857.

    Article  CAS  Google Scholar 

  • Lopes, C. B., Lito, P. F., Cardoso, S. P., Pereira, E., Duarte, A. C., & Silva, C. M. (2012). Metal recovery, separation and/or concentration. In S. Inamuddin & M. Luqman (Eds.), Ion-exchange technology: theory, materials and applications. Berlin: Springer.

    Google Scholar 

  • Lüdtke, K., Peinemann, K. V., Kasche, V., & Behling, R. D. (1998). Nitrate removal of drinking water by means of catalytically active membranes. Journal of Membrane Science, 151(1), 3–11.

    Article  Google Scholar 

  • Lv, L., He, J., Wei, M., Evans, D. G., & Duan, X. (2006a). Factors influencing the removal of fluoride from aqueous solution by calcined Mg–Al–CO3 layered double hydroxides. Journal of Hazardous Materials B, 133, 119–128.

    Article  CAS  Google Scholar 

  • Lv, L., He, J., Wei, M., Evans, D. G., & Duan, X. (2006b). Uptake of chloride ion from aqueous solution by calcined layered double hydroxides: equilibrium and kinetic studies. Water Research, 40, 735–743.

    Article  CAS  Google Scholar 

  • Lv, L., Sun, P., Gu, Z., Du, H., Pang, X., Tao, X., et al. (2009). Removal of chloride ion from aqueous solution by ZnAl–NO3 layered double hydroxides as anion-exchanger. Journal of Hazardous Materials, 161, 1444–1449.

    Article  CAS  Google Scholar 

  • Ma, J., & Dasgupta, P. K. (2010). Recent developments in cyanide detection: a review. Analytica Chimica Acta, 673, 117–125.

    Article  CAS  Google Scholar 

  • Mandal, S., & Mayadevi, S. (2008). Cellulose supported layered double hydroxides for the adsorption of fluoride from aqueous solution. Chemosphere, 72(6), 995–998.

    Article  CAS  Google Scholar 

  • Meenakshi, S., & Viswanathan, N. (2007). Identification of selective ion-exchange resin for fluoride sorption. Journal of Colloid and Interface Science, 308, 438–450.

    Article  CAS  Google Scholar 

  • Mena-Duran, C. J., Kou, M. R. S., Lopez, T., Azamar-Barrios, J. A., Aguilar, D. H., Dominguez, M. I., et al. (2007). Nitrate removal using natural clays modified by acid thermoactivation. Applied Surface Science, 253(13), 5762–5766.

    Article  CAS  Google Scholar 

  • Mohapatra, M., Anand, S., Mishra, B. K., Giles, D. E., & Singh, P. (2009). Review of fluoride removal from drinking water. Journal of Environmental Management, 91(1), 67–77.

    Article  CAS  Google Scholar 

  • Namasivayam, C., & Sangeetha, D. (2005). Removal and recovery of nitrate from water by ZnCl2 activated carbon from coconut coir pith, an agricultural solid waste. Indian Journal of Chemical Technology, 12(5), 513–521.

    CAS  Google Scholar 

  • Ndiayea, P. I., Moulin, P., Dominguez, L., Millet, J. C., & Charbit, F. (2005). Removal of fluoride from electronic industrial effluent by RO membrane separation. Desalination, 173(1), 25–32.

    Article  CAS  Google Scholar 

  • Oh, T.-K., & Chikushi, J. (2010). Fluoride adsorption on water treatment sludge processed by polyaluminium chloride. Journal of Food, Agriculture & Environment, 8(1), 358–362.

    CAS  Google Scholar 

  • Onyango, M. S., Kojima, Y., Aoyi, O., Bernardo, E. C., & Matsuda, H. (2004). Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9. Journal of Colloid and Interface Science, 279(2), 341–350.

    Article  CAS  Google Scholar 

  • Onyango, M. S., Kojima, Y., Kuchar, D., Osembo, S. O., & Matsuda, H. (2005). Diffusion kinetic modeling of fluoride removal from aqueous solution by charge-reversed zeolite particles. Journal of Chemical Engineering of Japan, 38(9), 701–710.

    Article  CAS  Google Scholar 

  • Onyango, M. S., Kojima, Y., Kumar, A., Kuchar, D., Kubota, M., & Matsuda, H. (2006). Uptake of fluoride by Al3 + pretreated low–silica synthetic zeolites: adsorption equilibrium and rate studies. Separation Science and Technology, 41(4), 683–704.

    Article  CAS  Google Scholar 

  • Orlando, U. S., Baes, A. U., Nishijima, W., & Okada, M. (2002). A new procedure to produce lignocellulosic anion exchangers from agricultural waste materials. Bioresource Technology, 83, 195–198.

    Article  CAS  Google Scholar 

  • Orlando, U. S., Okuda, T., Baes, A. U., Nishijima, W., & Okada, M. (2003). Chemical properties of anion-exchangers prepared from waste natural materials. Reactive and Functional Polymers, 55(3), 311–318.

    Article  CAS  Google Scholar 

  • Osathaphan, K., Boonpitak, T., Laopirojana, T., & Sharma, V. K. (2008). Removal of cyanide and zinc-cyanide complex by an ion-exchange process. Water, Air, and Soil Pollution, 194, 179–183.

    Article  CAS  Google Scholar 

  • Öztürk, N., & Köse, T. E. (2008). A kinetic study of nitrite adsorption onto sepiolite and powdered activated carbon. Desalination, 223, 174–179.

    Article  CAS  Google Scholar 

  • Panswad, T., & Anan, C. (1999). Impact of high chloride wastewater on an anaerobic/anoxic/aerobic process with and without inoculation of chloride acclimated seeds. Water Research, 33(5), 1165–1172.

    Article  CAS  Google Scholar 

  • Parrish, J. R. (1977). Macroporous resins as supports for a chelating liquid ion-exchanger in extraction chromatography. Analytical Chemistry, 49(8), 1189–1192.

    Article  CAS  Google Scholar 

  • Pikaar, I., Rozendal, R. A., Yuan, Z., Keller, J., & Rabaey, K. (2011a). Electrochemical sulfide oxidation from domestic wastewater using mixed metal-coated titanium electrodes. Water Research, 45(45), 5381–5388.

    Article  CAS  Google Scholar 

  • Pikaar, I., Rozendal, R. A., Yuan, Z., Keller, J., & Rabaey, K. (2011b). Electrochemical sulfide removal from synthetic and real domestic wastewater at high current densities. Water Research, 45, 2281–2289.

    Article  CAS  Google Scholar 

  • Pintar, A., & Batista, J. (2006). Improvement of an integrated ion-exchange/catalytic process for nitrate removal by introducing a two-stage denitrification step. Applied Catalysis B: Environmental, 63(1–2), 150–159.

    Article  CAS  Google Scholar 

  • Pintar, A., Batista, J., & Levec, J. (2001). Integrated ion exchange/catalytic process for efficient removal of nitrates from drinking water. Chemical Engineering Science, 56(4), 1551–1559.

    Article  CAS  Google Scholar 

  • Rabaey, K., Van de Sompel, K., Maignien, L., Boon, N., Aelterman, P., Clauwaert, P., et al. (2006). Microbial fuel cells for sulfide removal. Environmental Science and Technology, 40(17), 5218–5224.

    Article  CAS  Google Scholar 

  • Rajeshwar, K., Ibanez, J. G., & Swain, G. M. (1994). Electrochemistry and the environment. Journal of Applied Electrochemistry, 24(11), 1077–1091.

    Article  CAS  Google Scholar 

  • Reimers, C. E., Girguis, P., Stecher Iii, H. A., Tender, L. M., Ryckelynck, N., & Whaling, P. (2006). Microbial fuel cell energy from an ocean cold seep. Geobiology, 4(2), 123–136.

    Article  CAS  Google Scholar 

  • Rivas, B. L., & del Carmen Aguirre, M. (2007). Nitrite removal from water using water-soluble polymers in conjunction with liquid-phase polymer-based retention technique. Reactive and Functional Polymers, 67(12), 1487–1494.

    Article  CAS  Google Scholar 

  • Ruixia, L., **long, G., & Hongxiao, T. (2002). Adsorption of fluoride, phosphate, and arsenate ions on a new type of ion exchange fiber. Journal of Colloid and Interface Science, 248, 268–274.

    Article  CAS  Google Scholar 

  • Samatya, S., Kabay, N., Yuksel, U., Arda, M., & Yuksel, M. (2006). Removal of nitrate from aqueous solution by nitrate selective ion exchange resins. Reactive and Functional Polymers, 66, 1206–1214.

    Article  CAS  Google Scholar 

  • Samatya, S., Yuksel, U., Yuksel, M., & Kabay, N. (2007). Removal of fluoride from water by metal ions (Al3+, La3+ and ZrO2+) loaded natural zeolite. Separation Science and Technology, 42(9), 2033–2047.

    Article  CAS  Google Scholar 

  • Samatya, S., Mizuki, H., Ito, Y., Kawakita, H., & Uezu, K. (2010). The effect of polystyrene as a porogen on the fluoride ion adsorption of Zr(IV) surface-immobilized resin. Reactive and Functional Polymers, 70(1), 63–68.

    Article  CAS  Google Scholar 

  • Saremi, M., & Mahallati, E. (2002). A study on chloride-induced depassivation of mild steel in simulated concrete pore solution. Cement and Concrete Research, 32, 1915–1921.

    Article  CAS  Google Scholar 

  • Sarkar, S., & SenGupta, A. K. (2008). A new hybrid ion exchange-nanofiltration (HIX-NF) separation process for energy-efficient desalination: process concept and laboratory evaluation. Journal of Membrane Science, 324, 76–84.

    Article  CAS  Google Scholar 

  • Sivasankar, V., Ramachandramoorthy, T., & Chandramohan, A. (2010). Fluoride removal from water using activated and MnO2-coated tamarind fruit (tamarindus indica) shell: batch and column studies. Journal of Hazardous Materials, 177, 719–729.

    Article  CAS  Google Scholar 

  • Solangi, I. B., Memon, S., & Bhanger, M. I. (2010). An excellent fluoride sorption behavior of modified amberlite resin. Journal of Hazardous Materials, 176, 186–192.

    Article  CAS  Google Scholar 

  • Soldatov, V. S., Sokolova, V. I., Medyak, G. V., Shunkevich, A. A., & Akulich, Z. I. (2007). Binary ion exchange equilibria in systems containing NO, Cl and SO2 on fibrous anion exchangers with tetraalkylammomium groups. Reactive and Functional Polymers, 67, 1530–1539.

    Article  CAS  Google Scholar 

  • Spiegler, K. S., & El-Sayed, Y. M. (2001). The energetics of desalination processes. Desalination, 134(1–3), 109–128.

    Article  CAS  Google Scholar 

  • Strukul, G., Pinna, F., Marella, M., Meregalli, L., & Tomaselli, M. (1996). Sol–gel palladium catalysts for nitrate and nitrite removal from drinking water. Catalysis Today, 27(1–2), 209–214.

    Article  CAS  Google Scholar 

  • Sujana, M. G., & Anand, S. (2011). Fluoride removal studies from contaminated ground water by using bauxite. Desalination, 267(2–3).

  • Sun, Y. B., Fang, Q. H., Dong, J. P., Cheng, X. W., & Xu, J. Q. (2011). Removal of fluoride from drinking water by natural stilbite zeolite modified with Fe(III). Desalination, 277(1–3), 121–127.

    Article  CAS  Google Scholar 

  • Suzuki, T., Akizawa, Y., Ono, N., Masuda, H., Shindo, T., Nagamachi, M., et al. (1991). The transfer of mofezolac into the inflammatory site and the hypothalamus in rats. Japanese Pharmacology and Therapeutics, 19(1), 33–40.

    CAS  Google Scholar 

  • Swain, S. K., Dey, R. K., Islam, M., Patel, R. K., Jha, U., Patnaik, T., et al. (2009). Removal of fluoride from aqueous solution using aluminum-impregnated chitosan biopolymer. Separation Science and Technology, 44, 2096–2116.

    Article  CAS  Google Scholar 

  • Tahaikt, M., El Habbania, R., Haddou, A. A., Acharya, I., Amora, Z., Takya, M., et al. (2007). Fluoride removal from groundwater by nanofiltration. Desalination, 212(1–3), 46–53.

    Article  CAS  Google Scholar 

  • Tahaikt, M., Haddou, A. A., El Habbani, R., Amor, Z., Elhannouni, F., Taky, M., et al. (2008). Comparison of the performances of three commercial membranes in fluoride removal by nanofiltration. Continuous operations. Desalination, 225(1–3), 209–219.

    Article  CAS  Google Scholar 

  • Tang, Y., Guan, X., Su, T., Gao, N., & Wang, J. (2009). Fluoride adsorption onto activated alumina: modeling the effects of pH and some competing ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 337, 33–38.

    Article  CAS  Google Scholar 

  • Tchobanoglous, G., Burton, F. L., & Stensel, H. D. (2003). Wastewater engineering: treatment and reuse. New York: McGraw-Hill.

    Google Scholar 

  • Tokunaga, S., Haron, M. J., Wasay, S. A., Wong, K. F., Laosangthum, K., & Uchiumi, A. (1995). Removal of fluoride ions from aqueous solutions by multivalent metal compounds. International Journal of Environmental Studies, 48(1 Sect.A), 17–28.

    Article  Google Scholar 

  • Tor, A., Danaoglu, N., Arslan, G., & Cengeloglu, Y. (2009). Removal of fluoride from water by using granular red mud: batch and column studies. Journal of Hazardous Materials, 164, 271–278.

    Article  CAS  Google Scholar 

  • Tsuji, M., & Abe, M. (1986). Possible radiochemical separations of anionic radionuclides by amorphous hydrous titanium dioxide. Journal of Radioanalytical and Nuclear Chemistry Articles, 102(2), 283–294.

    Article  CAS  Google Scholar 

  • Tsuji, M., & Abe, M. (1991). Selective uptake of toxic elements by an amorphous titanium dioxide ion exchanger. Journal of Radioanalytical and Nuclear Chemistry, 149(1), 109–118.

    Article  CAS  Google Scholar 

  • Vaiopoulou, E., Melidis, P., & Aivasidis, A. (2005). Sulfide removal in wastewater from petrochemical industries by autotrophic denitrification. Water Research, 39(17), 4101–4109.

    Article  CAS  Google Scholar 

  • Viswanathan, N., & Meenakshi, S. (2010). Enriched fluoride sorption using alumina/chitosan composite. Journal of Hazardous Materials, 178, 226–232.

    Article  CAS  Google Scholar 

  • Wajima, T., Umeta, Y., Narita, S., & Sugawara, K. (2009). Adsorption behavior of fluoride ions using a titanium hydroxide-derived adsorbent. Desalination, 249(1), 323–330.

    Article  CAS  Google Scholar 

  • Warshawsky, A. (1974). Polystyrene impregnated with β-diphenylglyoxime, a selective reagent for palladium. Talanta, 21(6), 624–626.

    Article  CAS  Google Scholar 

  • Wild, S. R., Rudd, T., & Neller, A. (1994). Fate and effects of cyanide during wastewater treatment processes. Science of the Total Environment, 156(2), 93–107.

    Article  CAS  Google Scholar 

  • Yang, H., & Cheng, H. (2007). Controlling nitrite level in drinking water by chlorination and chloramination. Separation and Purification Technology, 56(3), 392–396.

    Article  CAS  Google Scholar 

  • Zhang, Z., & Pinnavaia, T. J. (2002). Mesostructured γ-Al2O3 with a lathlike framework morphology. Journal of the American Chemical Society, 124(41), 12294–12301.

    Article  CAS  Google Scholar 

  • Zhang, L., De Schryver, P., De Gusseme, B., De Muynck, W., Boon, N., & Verstraete, W. (2008). Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review. Water Research, 42(1–2), 1–12.

    Article  CAS  Google Scholar 

  • Zhang, J., **e, S., & Ho, Y.-S. (2009). Removal of fluoride ions from aqueous solution using modified attapulgite as adsorbent. Journal of Hazardous Materials, 165, 218–222.

    Article  CAS  Google Scholar 

  • Zhao, Y., Li, X., Liu, L., & Chen, F. (2008). Fluoride removal by Fe(III)-loaded ligand exchange cotton cellulose adsorbent from drinking water. Carbohydrate Polymers, 72, 144–150.

    Article  CAS  Google Scholar 

  • Zhu, P., Wang, H., Sun, B., Deng, P., Hou, S., & Yu, Y. (2009). Adsorption of fluoride from aqueous solution by magnesia-amended silicon dioxide granules. Journal of Chemical Technology and Biotechnology, 84, 1449–1455.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Patrícia F. Lito wishes to thank grant provided by Fundação para a Ciência e Tecnologia (SFRH/BPD/63214/2009; Portugal). José P.S. Aniceto would like to acknowledge the funding from the European Community’s Seventh Framework Programme FP7/2007-2013 under grant agreement No. CP-IP 228589-2 AFORE. Authors thank Pest-C/CTM/LA0011/2011 for CICECO funding. The authors thank Simão P. Cardoso for figures support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos M. Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lito, P.F., Aniceto, J.P.S. & Silva, C.M. Removal of Anionic Pollutants from Waters and Wastewaters and Materials Perspective for Their Selective Sorption. Water Air Soil Pollut 223, 6133–6155 (2012). https://doi.org/10.1007/s11270-012-1346-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1346-7

Keywords

Navigation