Log in

Screening and identification of specific cluster miRNAs in N2a cells infected by H7N9 virus

  • Original Paper
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

This study aims to screen and identify specific cluster miRNAs of H7N9 virus-infected N2a cells and explore the possible pathogenesis of these miRNAs. The N2a cells are infected with H7N9 and H1N1 influenza viruses, and the cells are collected at 12, 24 and 48 h to extract total RNA. To sequence miRNAs and identify different virus-specific miRNAs, high-throughput sequencing technology is used. Fifteen H7N9 virus-specific cluster miRNAs are screened, and eight of them are included in the miRBase database. These cluster-specific miRNAs regulate many signaling pathways, such as the PI3K-Akt signaling pathway, the RAS signaling pathway, the cAMP signaling pathway, actin cytoskeleton regulation and cancer-related genes. The study provides a scientific basis for the pathogenesis of H7N9 avian influenza, which is regulated by miRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W, Chen J, Jie ZJ, Qiu HB, Xu K, Xu XW, Lu HZ, Zhu WF, Gao ZC, **ang NJ, Shen YZ, He ZB, Gu Y, Zhang ZY, Yang Y, Zhao X, Zhou L, Li XD, Zou SM, Zhang Y, Li XY, Yang L, Guo JF, Dong J, Li Q, Dong LB, Zhu Y, Bai T, Wang SW, Hao P, Yang WZ, Zhang YP, Han J, Yu HJ, Li DX, Gao GF, Wu GZ, Wang Y, Yuan ZH, Shu YL (2013) Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med 368(20):1888–1897

    Article  CAS  PubMed  Google Scholar 

  2. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  3. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355

    Article  CAS  PubMed  Google Scholar 

  4. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20

    Article  CAS  PubMed  Google Scholar 

  6. Gottwein E, Cullen BR (2008) Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. Cell Host Microbe 3(6):375–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Skalsky RL, Cullen BR (2010) Viruses, microRNAs, and host interactions. Annu Rev Microbiol 64:123–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fu XY, Yang Y, Mo J, Li R, Fu L, Peng SF (2020) Upregulation of microRNA-328-3p by hepatitis B virus contributes to THLE-2 cell injury by downregulating FOXO4. J Transl Med 18:143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li Y, Chan EY, Li JN, Ni C, Peng XX, Rosenzweig E, Tumpey TM, Katze MG (2010) MicroRNA expression and virulence in pandemic influenza virus-infected mice. J Virol 84(6):3023–3032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li Y, Li JN, Belisle S, Baskin CR, Tumpey TM, Katze MG (2011) Differential microRNA expression and virulence of avian, 1918 reassortant, and reconstructed 1918 influenza A viruses. Virology 421(2):105–113

    Article  CAS  PubMed  Google Scholar 

  11. Li ZJ, Chen HL, Jiao PR, Deng GH, Tian GB, Li YB, Hoffmann E, Webster RG, Matsuoka Y, Yu KZ (2005) Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J Virol 79(18):12058–12064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Long JS, Giotis ES, Moncorgé O, Frise R, Mistry B, James J, Morisson M, Iqbal M, Vignal A, Skinner MA, Barclay WS (2016) Species difference in ANP32A underlies influenza A virus polymerase host restriction. Nature 529(7584):101–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cer RZ, Herrera-Galeano JE, Anderson JJ, Bishop-Lilly KA, Mokashi VP (2014) miRNA Temporal Analyzer (mirnaTA): a bioinformatics tool for identifying differentially expressed microRNAs in temporal studies using normal quantile transformation. Gigascience 3:20

    Article  PubMed  PubMed Central  Google Scholar 

  14. Agarwal V, Bell GW, Nam J-W, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4:e05005

    Article  PubMed  PubMed Central  Google Scholar 

  15. Friedman RC, Farh KK-H, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nam J-W, Rissland OS, Koppstein D, Abreu-Goodger C, Jan CH, Agarwal V, Yildirim MA, Rodriguez A, Bartel DP (2014) Global analyses of the effect of different cellular contexts on microRNA targeting. Mol Cell 53(6):1031–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Betel D, Koppal A, Agius P, Sander C, Leslie C (2010) Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 11(8):R90

    Article  PubMed  PubMed Central  Google Scholar 

  18. Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNAorg resource: targets and expression. Nucleic Acids Res 36(1):149-153

  19. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) MicroRNA targets in Drosophila. Genome Biol 5(1):R1

    Article  PubMed  PubMed Central  Google Scholar 

  20. Frank B, Marcu A, Antonio L, Weber H (2015) Autophagic digestion of Leishmania major by host macrophages is associated with differential expression of BNIP3, CTSE, and the miRNAs miR-101c, miR-129, and miR-210. Parasit Vectors 8:404

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yang MH, Li J, Deng SL, Fan H, Peng Y, Ye GG, Wang J, Wei JL, Jiang X, Xu ZX, Qing L, Wang FX, Yang Y, Liu YX (2022) Competitive endogenous RNA network activates host immune response in SARS-CoV-2-, panH1N1 (A/California/07/2009)-, and H7N9 (A/Shanghai/1/2013)-infected cells. Cells 11(3):487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Biswas S, Chen E, Haleyurgirisetty M, Lee S, Hewlett I, Devadas K (2020) Comparison of miRNA expression profiles between HIV-1 and HIV-2 infected monocyte-derived macrophages (MDMs) and peripheral blood mononuclear cells (PBMCs). Int J Mol Sci 21(18):6970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cheng Y, Du L, Jiao H, Zhu H, Xu K, Guo S, Shi Q, Zhao T, Pang F, Jia X, Wang F (2015) Mmu-miR-27a-5p-dependent upregulation of MCPIP1 inhibits the inflammatory response in LPS-induced RAW2647 macrophage cells. Biomed Res Int 2015:607692

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

National Natural Science Foundation of China (No.81871631), Title: Study on the Mechanism of PAFAH-PAF Unbalance on H7N9 Influenza Virus Encephalopathy; Shenzhen Science and Technology Plan Project (JCYJ20180307102005105).

Author information

Authors and Affiliations

Authors

Contributions

YY and JH formulated the idea of the article, performed the research, and analyzed the data. YY wrote the manuscript. ZQ, YL, YS, HL, WW and WX revised the data and improved manuscript writing. YS, QZ, and SF were responsible for the planning and coordination of the research activity and the acquisition of the financial support for the project leading to this publication. All authors reviewed the manuscript and approved the final version of the manuscript.

Corresponding authors

Correspondence to Qing Zheng or Shisong Fang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Edited by Zhen Fu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Y., Qiu, Z., Lei, Y. et al. Screening and identification of specific cluster miRNAs in N2a cells infected by H7N9 virus. Virus Genes 59, 716–722 (2023). https://doi.org/10.1007/s11262-023-01996-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-023-01996-y

Keywords

Navigation