Log in

Generation of porcine induced pluripotent stem cells and evaluation of their major histocompatibility complex protein expression in vitro

  • Original Article
  • Published:
Veterinary Research Communications Aims and scope Submit manuscript

Abstract

Induced pluripotent stem cells (iPSCs) are thought to be highly beneficial in the field of regenerative medicine and are believed to overcome immunogenic barriers to cell transplantation. However, issues remain regarding their safety and efficiency for medical use. Furthermore, some recent reports have suggested that iPSCs could be targeted by the autologous immune system. To promote practical applications of iPSCs, in depth research using appropriate animal models is needed and porcine species appear to provide an ideal model. Recent studies have focused on the generation of porcine iPSC cells, but no investigations of their immunological properties have been conducted to date. In the present study, we generated putative iPSCs from porcine somatic cells and measured major histocompatibility complex (MHC) expression on the iPSCs and their derivatives. Compact colonies that expressed pluripotent markers appeared 11 days after viral infection. Embryonic bodies (EB) were produced and differentiated into three germ layers in vitro. Karyoty** and swine leukocyte antigen (SLA) ty** showed that the iPSCs were identical to parental somatic cells. Porcine iPSCs expressed only low levels of MHC class I and moderately increased levels on their differentiated derivatives, whereas MHC class II was rarely expressed. In the presence of interferon-gamma (IFN-γ), the expression of MHC class I was elevated on differentiated iPSCs, and gradually decreased after withdrawal of the cytokine. Our data suggest that porcine iPSCs could be useful for preclinical studies of the efficiency and viability of iPSCs, and for devising strategies to rescue transplanted cells from the autologous immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baldeon ME, Neece DJ, Nandi D, Monaco JJ, Gaskins HR (1997) Interferon-gamma independently activates the MHC class I antigen processing pathway and diminishes glucose responsiveness in pancreatic beta-cell lines. Diabetes 46:770–778

    Article  PubMed  CAS  Google Scholar 

  • Biggar WD, Barker C, Bohn D, Kent G (1985) An experimental model to study blood and inflammatory neutrophils. Immunol Investig 14:473–477

    Article  CAS  Google Scholar 

  • Boyd AS, Wood KJ (2009) Variation in MHC expression between undifferentiated mouse ES cells and ES cell-derived insulin-producing cell clusters. Transplantation 87:1300–1304

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Liu L (2009) Current progress and prospects of induced pluripotent stem cells. Sci China C Life Sci 52:622–636

    Article  PubMed  Google Scholar 

  • de Rham C, Villard J (2011) How to cross immunogenetic hurdles to human embryonic stem cell transplantation. Semin Immunopathol 33:525–534

    Article  PubMed  Google Scholar 

  • Dehoux JP, Gianello P (2007) The importance of large animal models in transplantation. Front Biosci 12:4864–4880

    Article  PubMed  CAS  Google Scholar 

  • Dressel R, Nolte J, Elsner L, Novota P, Guan K, Streckfuss-Bomeke K, Hasenfuss G, Jaenisch R, Engel W (2010) Pluripotent stem cells are highly susceptible targets for syngeneic, allogeneic, and xenogeneic natural killer cells. FASEB J 24:2164–2177

    Article  PubMed  CAS  Google Scholar 

  • Drukker M, Katz G, Urbach A, Schuldiner M, Markel G, Itskovitz-Eldor J, Reubinoff B, Mandelboim O, Benvenisty N (2002) Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci U S A 99:9864–9869

    Article  PubMed  CAS  Google Scholar 

  • Drukker M, Katchman H, Katz G, Even-Tov Friedman S, Shezen E, Hornstein E, Mandelboim O, Reisner Y, Benvenisty N (2006) Human embryonic stem cells and their differentiated derivatives are less susceptible to immune rejection than adult cells. Stem Cells 24:221–229

    Article  PubMed  Google Scholar 

  • Esteban MA, Xu J, Yang J, Peng M, Qin D, Li W, Jiang Z, Chen J, Deng K, Zhong M, Cai J, Lai L, Pei D (2009) Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J Biol Chem 284:17634–17640

    Article  PubMed  CAS  Google Scholar 

  • Esteban MA, Peng M, Deli Z, Cai J, Yang J, Xu J, Lai L, Pei D (2010) Porcine induced pluripotent stem cells may bridge the gap between mouse and human iPS. IUBMB Life 62:277–282

    PubMed  CAS  Google Scholar 

  • Ezashi T, Telugu BP, Alexenko AP, Sachdev S, Sinha S, Roberts RM (2009) Derivation of induced pluripotent stem cells from pig somatic cells. Proc Natl Acad Sci U S A 106:10993–10998

    Article  PubMed  CAS  Google Scholar 

  • Fairbairn L, Kapetanovic R, Sester DP, Hume DA (2011) The mononuclear phagocyte system of the pig as a model for understanding human innate immunity and disease. J Leukoc Biol 89:855–871

    Article  PubMed  CAS  Google Scholar 

  • Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, Beard C, Brambrink T, Wu LC, Townes TM, Jaenisch R (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318:1920–1923

    Article  PubMed  CAS  Google Scholar 

  • Ho CS, Lunney JK, Ando A, Rogel-Gaillard C, Lee JH, Schook LB, Smith DM (2009) Nomenclature for factors of the SLA system, update 2008. Tissue Antigens 73:307–315

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Kim JH, Lee E, Jeong YW, Hossein MS, Park SM, Park SW, Lee JY, Jeong YI, Kim HS, Kim YW, Hyun SH, Hwang WS (2010) Establishment and characterization of embryonic stem-like cells from porcine somatic cell nuclear transfer blastocysts. Zygote 18:93–101

    Article  PubMed  CAS  Google Scholar 

  • Kiskinis E, Eggan K (2010) Progress toward the clinical application of patient-specific pluripotent stem cells. J Clin Invest 120:51–59

    Article  PubMed  CAS  Google Scholar 

  • Lian Q, Chow Y, Esteban MA, Pei D, Tse HF (2010) Future perspective of induced pluripotent stem cells for diagnosis, drug screening and treatment of human diseases. Thromb Haemost 104:39–44

    Article  PubMed  CAS  Google Scholar 

  • Ljunggren HG, Karre K (1990) In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 11:237–244

    Article  PubMed  CAS  Google Scholar 

  • Loh YH, Yang JC, De Los Angeles A, Guo C, Cherry A, Rossi DJ, Park IH, Daley GQ (2012) Excision of a viral reprogramming cassette by delivery of synthetic Cre mRNA. Curr Protoc Stem Cell Biol Chapter 4:Unit4A.5

  • Montserrat N, Bahima EG, Batlle L, Hafner S, Rodrigues AM, Gonzalez F, Belmonte JC (2011) Generation of pig iPS cells: a model for cell therapy. J Cardiovasc Transl Res 4:121–130

    Article  PubMed  Google Scholar 

  • Nagy ZB, Gergely P, Donath J, Borgulya G, Csanad M, Poor G (2008) Gene expression profiling in Paget’s disease of bone: upregulation of interferon signaling pathways in pagetic monocytes and lymphocytes. J Bone Miner Res 23:253–259

    Article  PubMed  CAS  Google Scholar 

  • Park IH, Lerou PH, Zhao R, Huo H, Daley GQ (2008) Generation of human-induced pluripotent stem cells. Nat Protoc 3:1180–1186

    Article  PubMed  CAS  Google Scholar 

  • Roberts RM, Telugu BP, Ezashi T (2009) Induced pluripotent stem cells from swine (Sus scrofa): why they may prove to be important. Cell Cycle 8:3078–3081

    Article  PubMed  CAS  Google Scholar 

  • Schook L, Beattie C, Beever J, Donovan S, Jamison R, Zuckermann F, Niemi S, Rothschild M, Rutherford M, Smith D (2005) Swine in biomedical research: creating the building blocks of animal models. Anim Biotechnol 16:183–190

    Article  PubMed  Google Scholar 

  • Si-Tayeb K, Noto FK, Nagaoka M, Li J, Battle MA, Duris C, North PE, Dalton S, Duncan SA (2010) Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 51:297–305

    Article  PubMed  CAS  Google Scholar 

  • Smith DM, Lunney JK, Ho CS, Martens GW, Ando A, Lee JH, Schook L, Renard C, Chardon P (2005a) Nomenclature for factors of the swine leukocyte antigen class II system, 2005. Tissue Antigens 66:623–639

    Article  PubMed  CAS  Google Scholar 

  • Smith DM, Lunney JK, Martens GW, Ando A, Lee JH, Ho CS, Schook L, Renard C, Chardon P (2005b) Nomenclature for factors of the SLA class-I system, 2004. Tissue Antigens 65:136–149

    Article  PubMed  CAS  Google Scholar 

  • Son H, Kim J, Lee S, Kim H, Lee E, Park J, Ka H, Kim H, Lee C (2009) Efficient Derivation and Long Term Maintenance of Pluripotent Porcine Embryonic Stem-like Cells. Asian-Aust J Anim Sci 22:26–34

    Google Scholar 

  • Song Z, Cai J, Liu Y, Zhao D, Yong J, Duo S, Song X, Guo Y, Zhao Y, Qin H, Yin X, Wu C, Che J, Lu S, Ding M, Deng H (2009) Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Res 19:1233–1242

    Article  PubMed  Google Scholar 

  • Suarez-Alvarez B, Rodriguez RM, Calvanese V, Blanco-Gelaz MA, Suhr ST, Ortega F, Otero J, Cibelli JB, Moore H, Fraga MF, Lopez-Larrea C (2010) Epigenetic mechanisms regulate MHC and antigen processing molecules in human embryonic and induced pluripotent stem cells. PLoS One 5:e10192

    Article  PubMed  Google Scholar 

  • Telugu BP, Ezashi T, Roberts RM (2010) Porcine induced pluripotent stem cells analogous to naive and primed embryonic stem cells of the mouse. Int J Dev Biol 54:1703–1711

    Article  PubMed  CAS  Google Scholar 

  • Theofilopoulos AN, Koundouris S, Kono DH, Lawson BR (2001) The role of IFN-gamma in systemic lupus erythematosus: a challenge to the Th1/Th2 paradigm in autoimmunity. Arthritis Res 3:136–141

    Article  PubMed  CAS  Google Scholar 

  • Thong LM, Choi H, Kwon OJ, Kim JH, Kim YB, Oh JW, Seo K, Yeom SC, Lee WJ, Park C (2011) Systematic analysis of swine leukocyte antigen-DRB1 nucleotide polymorphisms using genomic DNA-based high-resolution genoty** and identification of new alleles. Tissue Antigens 77:572–583

    Article  PubMed  CAS  Google Scholar 

  • Toledo JR, Prieto Y, Oramas N, Sanchez O (2009) Polyethylenimine-based transfection method as a simple and effective way to produce recombinant lentiviral vectors. Appl Biochem Biotechnol 157:538–544

    Article  PubMed  CAS  Google Scholar 

  • Wernersson R, Schierup MH, Jorgensen FG, Gorodkin J, Panitz F, Staerfeldt HH, Christensen OF, Mailund T, Hornshoj H, Klein A, Wang J, Liu B, Hu S, Dong W, Li W, Wong GK, Yu J, Wang J, Bendixen C, Fredholm M, Brunak S, Yang H, Bolund L (2005) Pigs in sequence space: a 0.66X coverage pig genome survey based on shotgun sequencing. BMC Genomics 6:70

    Article  PubMed  Google Scholar 

  • Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci U S A 105:5856–5861

    Article  PubMed  CAS  Google Scholar 

  • West FD, Terlouw SL, Kwon DJ, Mumaw JL, Dhara SK, Hasneen K, Dobrinsky JR, Stice SL (2010) Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells Dev 19:1211–1220

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Chen J, Ren J, Bao L, Liao J, Cui C, Rao L, Li H, Gu Y, Dai H, Zhu H, Teng X, Cheng L, **ao L (2009) Generation of pig induced pluripotent stem cells with a drug-inducible system. J Mol Cell Biol 1:46–54

    Article  PubMed  CAS  Google Scholar 

  • Wulster-Radcliffe MC, Ajuwon KM, Wang J, Christian JA, Spurlock ME (2004) Adiponectin differentially regulates cytokines in porcine macrophages. Biochem Biophys Res Commun 316:924–929

    Article  PubMed  CAS  Google Scholar 

  • Xu D, Alipio Z, Fink LM, Adcock DM, Yang J, Ward DC, Ma Y (2009) Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proc Natl Acad Sci U S A 106:808–813

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Jiang W, Liu M, Sui X, Yin X, Chen S, Shi Y, Deng H (2009) Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res 19:429–438

    Article  PubMed  CAS  Google Scholar 

  • Zhao T, Zhang ZN, Rong Z, Xu Y (2011) Immunogenicity of induced pluripotent stem cells. Nature 474:212–215

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. In-Hyun Park (Yale University, USA) for providing the retroviral vector, Dr. Chankyu Park (Konkuk University, Korea) for SLA ty** analysis, and Dr. Jung-Im Yun for technical assistance. This study was supported by a grant (Project Code No. Z-1541745-2013-14-01, Z-1541745-2013-14-02) from Animal and Plant Quarantine Agency, Ministry of Agriculture, Food and Rural Affairs (MAFRA), Republic of Korea in 2013. This work was also supported by grants from Next-Generation BioGreen 21 program (No.PJ009069), Rural Development Administration, Korea.

Ethical standard

The experiments comply with the current laws of the Republic of Korea and Institutional Animal Care and Use Committee (Kangwon National University, Korea).

Conflict of interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heung-Myong Woo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

(PDF 780 kb)

Supplementary Table 1

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, KM., Cha, SH., Ahn, C. et al. Generation of porcine induced pluripotent stem cells and evaluation of their major histocompatibility complex protein expression in vitro. Vet Res Commun 37, 293–301 (2013). https://doi.org/10.1007/s11259-013-9574-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11259-013-9574-x

Keywords

Navigation