Log in

Commutative Complex Algebras of the Second Rank with Unity and Some Cases of Plane Orthotropy. I

  • Published:
Ukrainian Mathematical Journal Aims and scope

A Correction to this article was published on 15 March 2019

This article has been updated

Among all two-dimensional algebras of the second rank with unity e over the field of complex numbers ℂ, we find a semisimple algebra 𝔹0: ={c1e + c2ω : ck ∈ , k = 1, 2}, ω2 = e, containing bases (e1, e2) such that \( {e}_1^4+2p{e}_1^2{e}_2^2+{e}_2^4=0 \) for any fixed p > 1. A domain {(e1, e2)} is described in the explicit form. We construct 𝔹0-valued “analytic” functions Φ such that their real-valued components satisfy the equation for the stress function u in the case of orthotropic plane deformations \( \left(\frac{\partial^4}{\partial {x}^4}+2p\frac{\partial^4}{\partial {x}^2\partial {y}^2}+\frac{\partial^4}{\partial {y}^4}\right)u\left(x,y\right)=0 \), where x and y are real variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 20 May 2019

    The author���s name should read S. V. Gryshchuk.

  • 20 May 2019

    The author���s name should read S. V. Gryshchuk.

References

  1. L. Sobrero, “Nuovo metodo per lo studio dei problemi di elasticità, con applicazione al problema della piastra forata,” Ric. Ingegn., 13, No. 2, 255–264 (1934).

    MathSciNet  MATH  Google Scholar 

  2. J. A. Edenhofer, “A solution of the biharmonic Dirichlet problem by means of hypercomplex analytic functions,” in: V. E. Meister, N. Weck, and W. L. Wendland (editors), Function Theoretical Methods for Partial Differential Equations, Lecture Notes in Mathematics, Vol. 561, Springer, Berlin (1976), pp. 192–202.

  3. R. P. Gilbert and W. L. Wendland, “Analytic, generalized, hyperanalytic function theory and an application to elasticity,” Proc. Roy. Soc. Edinburgh, Sect. A, 73, 317–331 (1975).

    Article  MathSciNet  Google Scholar 

  4. V. F. Kovalev and I. P. Mel’nichencko, “Biharmonic functions on a biharmonic plane,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 8, 25–27 (1981).

  5. S. V. Grishchuk and S. A. Plaksa, “Monogenic functions in a biharmonic algebra,” Ukr. Mat. Zh., 61, No. 12, 1587–1596 (2009); English translation: Ukr. Math. J., 61, No. 12, 1865–1876 (2009).

  6. S. V. Grishchuk and S. A. Plaksa, “Monogenic functions in a biharmonic plane,” Dop. Nats. Akad. Nauk Ukr., No. 12, 13–20 (2009).

  7. S. V. Gryshchuk and S. A. Plaksa, “Reduction of a Schwartz-type boundary value problem for biharmonic monogenic functions to Fredholm integral equations,” Open Math., 15, No. 1, 374–381 (2017).

    Article  MathSciNet  Google Scholar 

  8. V. F. Kovalev, Schwarz Biharmonic Problem [in Russian], Preprint No. 86.16, Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (1986).

  9. S. V. Gryshchuk and S. A. Plaksa, “Schwartz-type integrals in a biharmonic plane,” Int. J. Pure Appl. Math., 83, No. 1, 193–211 (2013).

    Article  Google Scholar 

  10. S. V. Gryshchuk and S. A. Plaksa, “Monogenic functions in the biharmonic boundary value problem,” Math. Meth. Appl. Sci., 39, No. 11, 2939–2952 (2016).

    Article  MathSciNet  Google Scholar 

  11. S. V. Gryshchuk, 𝔹-Valued Monogenic Functions and Their Applications to Boundary Value Problems in Displacements of 2-D Elasticity, Preprint Ar**v 1601.01626 (2016).

  12. V. F. Kovalev and I. P. Mel’nichencko, “Biharmonic potentials and plane isotropic displacement fields,” Ukr. Mat. Zh., 40, No. 2, 229–231 (1988); English translation: Ukr. Math. J., 40, No. 2, 197–199 (1988).

  13. S. V. Hryshchuk, “Hypercomplex monogenic functions of the biharmonic variable in some problems of the plane theory of elasticity,” Dop. Nats. Akad. Nauk Ukr., No. 6, 7–12 (2015).

  14. S. V. Hryshchuk, “One-dimensionality of the kernel of the system of Fredholm integral equations for the homogeneous biharmonic problem,” in: “Analysis and Applications,” Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences [in Ukrainian], Kyiv, 14, No. 1 (2017), pp. 128–139.

  15. Ts. S. Bon, “Neumann problem for the biharmonic equation,” Differents. Uravn., 27, No. 1, 169–172 (1991).

    MathSciNet  MATH  Google Scholar 

  16. V. F. Kovalev and I. P. Mel’nichencko, Algebras of Functional-Invariant Solutions of the p-Biharmonic Equation [in Russian], Preprint No. 91.10, Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (1991).

  17. D. Weisz-Patrault, S. Bock, and K. Gürlebeck, “Three-dimensional elasticity based on quaternion-valued potentials,” Int. J. Solids Structures, 51, No. 19, 3422–3430 (2014).

    Article  Google Scholar 

  18. S. Bock, K. Gürlebeck, D. Legatiuk, and H. M. Nguyen, “ -Hyperholomorphic functions and a Kolosov–Muskhelishvili formula,” Math. Meth. Appl. Sci., 38, No. 18, 5114–5123 (2015).

    Article  MathSciNet  Google Scholar 

  19. Yu. M. Grigor’ev, “Regular quaternionic polynomials and their properties,” Complex Var. Elliptic Equat., 62, No. 9, 1343–1363 (2017).

    Article  MathSciNet  Google Scholar 

  20. A. M. Tsalik, “Quaternion functions, their properties, and some applications to problems of mechanics of continua,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 12, 21–24 (1986).

  21. A. Tsalik, “Quaternionic representations of the 3D elastic and thermoelastic boundary problems,” Math. Meth. Appl. Sci., 18, 687–708 (1995).

    Article  MathSciNet  Google Scholar 

  22. K. Gülebeck, K. Habetha, and W. Sprössig, Application of Holomorphic Functions in Two and Higher Dimensions, Birkhäuser, Basel (2016).

    MATH  Google Scholar 

  23. A. P. Soldatov, “Hyperanalytic functions and their applications,” in: Contemporary Mathematics and Its Applications. Theory of Functions [in Russian], Institute of Cybernetics, Georgian Academy of Sciences, Tbilisi, 15 (2004), pp. 142–199.

  24. A. P. Soldatov, “On the theory of anisotropic plane elasticity,” in: Contemporary Mathematics. Fundamental Trends [in Russian], RUDN, Moscow, 60 (2016), pp. 114–163.

  25. E. A. Abapolova and A. P. Soldatov, “Lamé system of the theory of elasticity in a plane orthotropic medium,” in: Contemporary Mathematics and Its Applications [in Russian], Institute of Cybernetics, Georgian Academy of Sciences, Tbilisi, 53, Part 1 (2008), pp. 3–9.

  26. S. P. Mitin, “On the representation of solutions of the anisotropic theory of elasticity,” Differents. Uravn., 34, No. 1, 94–100 (1998).

    MathSciNet  Google Scholar 

  27. N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  28. M. M. Fridman, “Mathematical theory of elasticity of anisotropic media,” Prikl. Mat. Mekh., 14, No. 3, 321–340 (1950).

    MathSciNet  Google Scholar 

  29. S. G. Lekhnitskii, Theory of Elasticity of Anisotropic Body [in Russian], Nauka, Moscow (1977).

    MATH  Google Scholar 

  30. D. I. Sherman, “Plane problem of the theory of elasticity for an anisotropic medium,” Tr. Seism. Inst. Akad. Nauk SSSR, No. 6, 51–78 (1938).

  31. Yu. A. Bogan, “Regular integral equations for the second boundary-value problem in the anisotropic two-dimensional theory of elasticity,” Izv. Ros. Akad. Nauk, Mekh. Tverd. Tela, No. 4, 17–26 (2005).

  32. V. Z. Parton and P. I. Perlin, Methods of the Mathematical Theory of Elasticity [in Russian], Nauka, Moscow (1981).

    MATH  Google Scholar 

  33. V. D. Kupradze, Methods of Potential in the Theory of Elasticity [in Russian], Fizmatgiz, Moscow (1963).

    Google Scholar 

  34. E. Study, “Über systeme complexer zahlen und ihre anwendungen in der theorie der transformationsgruppen,” Monatsh. Math., 1, No. 1, 283–354 (1890).

    Article  MathSciNet  Google Scholar 

  35. N. G. Chebotarev, Introduction to the Theory of Algebras [in Russian], LKI, Moscow (2008).

    Google Scholar 

  36. D. Hestenes, P. Reany, and G. Sobczyk, “Unipodal algebra and roots of polynomials,” Adv. Appl. Clifford Algebras, 1, No. 1, 31–51 (1991).

    MATH  Google Scholar 

  37. W. E. Baylis (editor), Clifford (Geometric) Algebras: with Applications to Physics, Mathematics, and Engineering, Birkhäuser, Boston (1996).

    MATH  Google Scholar 

  38. A. Khrennikov and G. Segre, An Introduction to Hyperbolic Analysis, Preprint Ar**v 0507053 (2005).

  39. A. E. Motter and M. A. F. Rosa, “Hyperbolic calculus,” Adv. Appl. Clifford Algebras, 8, No. 1, 109–128 (1998).

    Article  MathSciNet  Google Scholar 

  40. V. V. Kisil, “Induced representations and hypercomplex numbers,” Adv. Appl. Clifford Algebras, 23, No. 2, 417–440 (2013).

    Article  MathSciNet  Google Scholar 

  41. S. Ulrych, “Relativistic quantum physics with hyperbolic numbers,” Phys. Lett. B, 625, No. 3, 313–323 (2005).

    Article  MathSciNet  Google Scholar 

  42. S. A. Plaksa and R. P. Pukhtaevych, “Constructive description of monogenic functions in a finite-dimensional semisimple commutative algebra,” Dop. Nats. Akad. Nauk Ukr., No. 1, 14–21 (2014).

  43. S. A. Plaksa and R. P. Pukhtaievych, “Monogenic functions in a finite-dimensional semi-simple commutative algebra,” An. Ştiinţ. Univ. “Ovidius” Constanţa, 22, No. 1, 221–235 (2014).

    MathSciNet  MATH  Google Scholar 

  44. S. V. Grishchuk and S. A. Plaksa, “On the logarithmic residue of monogenic functions of biharmonic variable,” in: “Complex Analysis and Flows with Free Boundaries,” Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv, 7, No. 2 (2010), pp. 227–234.

  45. I. P. Mel’nichencko, “Biharmonic bases in algebras of the second rank,” Ukr. Mat. Zh., 38, No. 2, 252–254 (1986); English translation: Ukr. Math. J., 38, No. 2, 224–226 (1986).

  46. J. D. Riley, “Contributions to the theory of functions of a bicomplex variable,” Tohoku Math. J., 5, No. 2, 132–165 (1953).

    Article  MathSciNet  Google Scholar 

  47. V. G. Nikolaev, Investigation of Boundary Properties of Douglis Analytic Functions [in Russian], Candidate-Degree Thesis (Physics and Mathematics), Velikii Novgorod (2015).

    Google Scholar 

  48. R. P. Gilbert and G. N. Hile, “Generalized hypercomplex function theory,” Trans. Amer. Math. Soc., 195, 1–29 (1974).

    Article  MathSciNet  Google Scholar 

  49. G. N. Hile, “Function theory for a class of elliptic systems in the plane,” J. Different. Equat., 32, No. 3, 369–387 (1979).

    Article  MathSciNet  Google Scholar 

  50. R. Z. Yeh, “Hyperholomorphic functions and higher order partial differential equations in the plane,” Pacif. J. Math., 142, No. 2, 379–399 (1990).

    Article  MathSciNet  Google Scholar 

  51. R. A. Horn and C. R. Johnson, Matrix Analysis [Russian translation], Mir, Moscow (1989).

    Google Scholar 

  52. A. Douglis, “A function-theoretic approach to elliptic systems of equations in two variables,” Comm. Pure Appl. Math., 6, No. 2, 259–289 (1953).

    Article  MathSciNet  Google Scholar 

  53. P. V. Bekhterev, Analytical Investigations of the Generalized Hooke Law. Part 1. Application of the Studies on the Potential Energy and the Principle of the Least Work [in Russia], Morskoe Vedomstvo, Leningrad (1925).

  54. G. J. Hahn, Elastizitatstheorie. Grundiagen der Linearen Theorie und Anwendungen auf Eindimensionale, Ebene und Raumliche Probleme, B. G. Teubner, Stuttgart (1985).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 70, No. 8, pp. 1058–1071, August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hryshchuk, S.V. Commutative Complex Algebras of the Second Rank with Unity and Some Cases of Plane Orthotropy. I. Ukr Math J 70, 1221–1236 (2019). https://doi.org/10.1007/s11253-018-1564-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-018-1564-2

Navigation