Log in

Effect of coated cysteamine hydrochloride and probiotics supplemented alone or in combination on feed intake, nutrients digestibility, ruminal fermentation, and blood metabolites of Kamphaeng Saen beef heifers

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

This study aimed to determine the effects of coated cysteamine hydrochloride (CSH) and probiotics (PB) supplemented alone or in combination on feed intake, digestibility, ruminal fermentation, and blood metabolites of heifer beef cattle. Sixteen heifers (body weight = 210 ± 41 kg; age = 9 ± 2 months) were assigned according to a randomized complete block design in a 2 × 2 factorial arrangement. All animals were fed the basal diet, which contained an 82:17 concentrate-to-forage ratio, and the forage source was rice straw. The treatments were as follows: (1) 0% PB + 0 g/d CSH, (2) 0.1% PB + 0 g/d CSH, (3) 0% PB + 20 g/d CSH, and (4) 0.1% PB + 20 g/d CSH. The main effect of CSH supplementation has been found to improve feed intake (P < 0.05). There were no treatment interactions with nutrient digestibility or rumen fermentation parameters. Supplementation of CSH did not affect any of the variables evaluated, while probiotics supplementation increased DM digestibility due to the increases in CP and fiber fraction digestibility. Compared to controls and CSH, at 16 h post-feeding, heifers receiving probiotics tended (P = 0.07) to show 17% greater ruminal NH3-N concentration, but this effect was not evident at 2 h post-feeding. However, the main effects of probiotic supplementation showed a tendency to increase the number of total bacteria and fungal zoospores in the rumen at 2 h post-feeding. The blood triglyceride (BTG) concentration of heifers fed a diet supplemented with 20 g/d CSH and 0.1% probiotics was found to be greater than those fed CSH alone (P < 0.1) at 16 h post-feeding, and then, there were greater BTG concentrations than other treatments (P < 0.05) at 2 h post-feeding. In conclusion, the combination of CSH and PB did not potentiate the effects of probiotics on digestibility and rumen fermentation and had minimal effects on blood parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

This article includes all of the information generated or analyzed throughout the study.

References

  • Abdel-Salam, A.M., Zeitoun, M.M. and Abdelsalam, M.M., 2014. Effect of synbiotic supplementation on growth performance, blood metabolites, insulin and testosterone and wool traits of growing lambs. Journal of Biological Sciences, 14, 292–298.

    Article  CAS  Google Scholar 

  • Adjei-Fremah, S., Ekwemalor, K. and Ibrahim, M.W., 2018. Probiotics and ruminant health. Current Knowledge and Future Prospects. Intech Open. 72846.

    Google Scholar 

  • Aluwong, T., Kobo, P.I. and Abdullahi, A., 2010. Volatile fatty acids production in ruminants and the role of monocarboxylate transporters: A review. African Journal of Biotechnology, 9, 6229–6232.

    CAS  Google Scholar 

  • AOAC. 1990. Official Methods of Analysis. 16th ed. Association of Official Analytical Chemists. Arlington, VA.

    Google Scholar 

  • Atallah, C., Charcosset, C. and Greige-Gerges, H., 2020. Challenges for cysteamine stabilization, quantification, and biological effects improvement. Journal of Pharmaceutical Analysis, 10, 499–516.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnett, M.C. and Hegarty, R.S., 2014. Cysteamine hydrochloride increases bodyweight and wool fibre length, improves feed conversion ratio and reduces methane yield in sheep. Animal Production Science, 54, 1288–1293.

    Article  CAS  Google Scholar 

  • Barnett, M.C. and Hegarty, R.S., 2016. Cysteamine: a human health dietary additive with potential to improve livestock growth rate and efficiency. Animal Production Science, 56, 1330–1338.

    Article  CAS  Google Scholar 

  • Boonsaen, P., Soe, N.W., Maitreejet, W., Majarune, S., Reungprim, T. and Sawanon, S., 2017. Effects of protein levels and energy sources in total mixed ration on feedlot performance and carcass quality of Kamphaeng Saen steers. Agriculture and Natural Resources, 51, 57–61.

    Article  Google Scholar 

  • Broadway, P.R., Carroll, J.A., Burdick Sanchez, N.C., Callaway, T.R., Lawhon, S.D., Gart, E.V., Bryan, L.K., Nisbet, D.J., Hughes, H.D., Legako, J.F., O'Connor, D.L., Hergenreder, J.E. and Rounds, P.W., 2020. Bacillus subtilis PB6 supplementation in weaned Holstein steers during an experimental salmonella challenge. Foodborne Pathogens and Disease, 17(8), 521–528.

    Article  CAS  PubMed  Google Scholar 

  • Bunmee, T., Chaiwang, N., Kaewkot, C. and Jaturasitha, S., 2018. Current situation and future prospects for beef production in Thailand — A review. Asian-Australasian Journal of Animal Sciences, 31, 968–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo-Lopez, E. and Dominguez, M.G., 2019. Factors that affect the ruminal microbial composition and methods to determine microbial protein yield. Revista Mexicana de Ciencias Pecuarias, 10.

  • Chaiwang, N., Jaturasitha, S., Sringam, K., Wicke, M. and Kreuzer, M., 2015. Comparison of the meat quality of Thai indigenous Upland Cattle and F2-crossbreds with 75% Charolais blood proportion. Journal of Applied Animal Research, 43, 196–201.

    Article  CAS  Google Scholar 

  • Chang, M., Ma, F., Wei, J., Liu, J., Nan, X., and Sun, P., 2021. Live Bacillus subtilis natto promotes rumen fermentation by modulating rumen microbiota in vitro. Animals (Basel). 11(6), 1519.

    Article  PubMed  Google Scholar 

  • Dijkstra, J., Ellis, J.L., Kebreab, E., Strathe, A.B., López, S., France, J. and Bannink, A., 2012. Ruminal pH regulation and nutritional consequences of low pH. Animal Feed Science and Technology, 172, 22–33.

    Article  CAS  Google Scholar 

  • Direkvandi, E., Mohammadabadi, T. and Salem, A.Z.M., 2020. Effect of microbial feed additives on growth performance, microbial protein synthesis, and rumen microbial population in growing lambs. Translational Animal Science, 4(4), txaa203.

    Google Scholar 

  • DLD. 2022. Number of farmers and beef cattle in 2022. Department of Livestock Development, Ministry of Agriculture and Cooperatives. Bangkok, Thailand. http://ict.dld.go.th/webnew/images/stories/stat_web/yearly/2565/province/T2-1-Cattle.pdf. Accessed 10 Oct 2022.

  • Duan, M., Zhang, Y., Zhou, B., Qin, Z., Wu, J., Wang, Q. and Yin, Y., 2020. Effects of Bacillus subtilis on carbon components and microbial functional metabolism during cow manure–straw composting. Bioresource Technology, 303, 122868.

    Article  CAS  PubMed  Google Scholar 

  • Esawy, M.A., Ahmed, E.F., Helmy, W.A., Mansour, M., El-Senousy, W.M., and El-Safty, M.M., 2011. Production of levansucrase from novel honey Bacillus subtilis isolates capable of producing antiviral levans. Carbohydrate Polymers, 86, 823–830.

    Article  CAS  Google Scholar 

  • Galyean, M., 1989. Laboratory procedure in animal nutrition research. Department of Animal and Range Sciences. New Mexico State University, USA.

    Google Scholar 

  • Ghorbani, G.R., Morgavi, D.P., Beauchemin, K.A., and Leedle, J.A.Z., 2002. Effects of bacterial direct-fed microbials on ruminal fermentation, blood variables, and the microbial populations of feedlot cattle. Journal of Animal Science, 80, 1977–1985.

    Article  CAS  PubMed  Google Scholar 

  • Goering, H.K. and Van Soest, P.J., 1970. Forage Fiber Analysis. A. R. S. Hand Book No. 379. Department of Agriculture, Washington, D. C., USA.

    Google Scholar 

  • Goto, H., Qadis, A.Q., Kim, Y.-H., Ikuta, K., Ichijo, T. and Sato, S., 2016. Effects of a bacterial probiotic on ruminal pH and volatile fatty acids during subacute ruminal acidosis (SARA) in cattle. The Journal of Veterinary Medical Science, 78, 1595–1600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong L., Hong-bo Y., Jian-Ming Z., **ang-huan L., **-shun Z., Miao L., and Guo-qi, Z., 2015. Effects of cysteamine hydrochloride on apparent nutrient digestibility,serum biochemical and antioxidant indices of lactating dairy cows. Acta Veterinaria et Zootechnica Sinica, 46(3), 416-423.

    Google Scholar 

  • Huang, Y., Zou, C., Wei, S., Liang, X., Li, S., Lu, T., Yang, B., and Liang, X., 2014. Effects of cysteamine on ruminal fermentation parameters and methane production of water buffalo by in vitro gas production method. Chinese Journal of Animal Nutrition, 1.

  • Kawauchi, D., Angthong, W., Keaokliang, O., Ishida, T., Takahashi, T. and Kawashima, T., 2021. Effect of feeding Bacillus subtilis on rumen fermentation, blood metabolites, nutrient digestibility, and energy and nitrogen balances in non-lactating crossbred cows. Animal Science Journal, 92, e13531.

    Article  CAS  PubMed  Google Scholar 

  • Kendall, C., Leonardi, C., Hoffman, P.C. and Combs, D.K., 2009. Intake and milk production of cows fed diets that differed in dietary neutral detergent fiber and neutral detergent fiber digestibility Journal of Dairy Science, 92, 313–323

    Article  CAS  PubMed  Google Scholar 

  • Khampa, S., Chaowarat, P., Chumpawade, S., Singhalert, R. and Wanapat, M., 2009. Effects of malate and cassava hay in high-quality feed block on ruminal fermentation efficiency and digestibility of nutrients in dairy steers. Asian Journal of Animal Sciences, 3, 33–38.

    Article  CAS  Google Scholar 

  • Khunchaikarn, S., Mankeb, P. and Suwanmaneepong, S., 2021. Economic efficiency of beef cattle production in Thailand . Journal of Management Information and Decision Sciences, 25(2), 1–9.

    Google Scholar 

  • Kljak, K., Heinrichs, B.S. and Heinrichs, A.J.. 2019. Fecal particle dry matter and fiber distribution of heifers fed ad libitum and restricted with low and high forage quality. Journal of Dairy Science, 102( 5), 4694-4703.

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni, N.A., Chethan, H.S., Srivastava, R. and Gabbur, A.B., 2022. Role of probiotics in ruminant nutrition as natural modulators of health and productivity of animals in tropical countries: an overview. Tropical Animal Health and Production, 54, 110.

    Article  PubMed  Google Scholar 

  • Lee, C. and Hristov, A.N.. 2013. Short communication: Evaluation of acid-insoluble ash and indigestible neutral detergent fiber as total-tract digestibility markers in dairy cows fed corn silage-based diets. Journal of Dairy Science, 96, 5295–5299.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H., Bai, M., Tan, B., Xu, K., Yu, R., Huang, R. and Yin, Y., 2019. Influence of supplemented coated-cysteamine on morphology, apoptosis and oxidative stress status of gastrointestinal tract. BMC Veterinary Research, 15, 328.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mair, B., Drillich, M., Klein-Jöbstl, D., Kanz, P., Borchardt, S., Meyer, L., Schwendenwein, I. and Iwersen, M., 2016. Glucose concentration in capillary blood of dairy cows obtained by a minimally invasive lancet technique and determined with three different hand-held devices. BMC Veterinary Research, 12, 34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masoero, F., Gallo, A., Moschini, M., Piva, G. and Diaz, D. 2007. Carryover of aflatoxin from feed to milk in dairy cows with low or high somatic cell counts. Animal, 1(9), 1344-1350.

    Article  CAS  PubMed  Google Scholar 

  • Matthews, C., Crispie, F., Lewis, E., Reid, M., O’Toole, P.W. and Cotter, P.D., 2019. The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes, 10, 115–132.

    Article  CAS  PubMed  Google Scholar 

  • McAllister, T.A., Stanford, K., Chaves, A.V., Evans, P.R., Eustaquio de Souza Figueiredo, E. and Ribeiro, G., 2020. Chapter 5 - Nutrition, feeding and management of beef cattle in intensive and extensive production systems In:, F. W. Bazer, G. C. Lamb, and G. Wu (eds), Animal Agriculture, (Academic Press), 75–98.

    Chapter  Google Scholar 

  • Miller, D.W., Prosser, Z., Chee, E.Y.W., Hansen, C.F., Dunshea, F.R., Mullan, B.P., and Pluske, J.R., 2016. Dietary stimulation of the endogenous somatotropic axis in weaner and grower-finisher pigs using medium chain triglycerides and cysteamine hydrochloride. Journal of Animal Science and Biotechnology, 7, 61.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagaraja, T.G. and Titgemeyer, E.C., 2007. Ruminal acidosis in beef cattle: the current microbiological and nutritional outlook. Journal of Dairy Science, 90 Suppl 1, E17-38.

    Article  PubMed  Google Scholar 

  • NASEM, 2016. Nutrient Requirements of Beef Cattle. 8th Revised Edition. The National Academies of Sciences, Engineering, and Medicine, Washington, DC.

  • Ndlovu, T., Chimonyo, M., Okoh, A.I., Muchenje, V., Dzama, K. and Raats, J.G., 2007. Assessing the nutritional status of beef cattle: current practices and future prospects. African Journal of Biotechnology, 6.

  • Oba, M. and Allen, M.S., 1999. Evaluation of the importance of the digestibility of neutral detergent fiber from forage: effects on dry matter intake and milk yield of dairy cows Journal of Dairy Science, 82, 589–596

    Article  CAS  PubMed  Google Scholar 

  • OECD-FAO, 2021. Meat. OECD-FAO Agricultural Outlook 2021-2030. https://www.fao.org/3/cb5332en/Meat.pdf. Accessed 10 Oct 2022.

  • Owens, F.N., Secrist, D.S., Hill, W.J. and Gill, D.R., 1998. Acidosis in cattle: a review. Journal of Animal Science, 76, 275–286 .

    Article  CAS  PubMed  Google Scholar 

  • Pan, L., Harper, K., Queiroz, O., Copani, G., and Cappellozza, B.I., 2022. Effects of Bacillus-based direct-fed microbial on in vitro nutrient digestibility of forage and high-starch concentrate substrates. Translational Animal Science, 6, txac067.

    Google Scholar 

  • Park, C.S., Rafalowski, W. and Marx, G.D., 1983. Effect of dietary fat supplement on lipid metabolism of Holstein Heifers. Journal of Dairy Science, 66, 528–534.

    Article  CAS  PubMed  Google Scholar 

  • Paul, B.D. and Snyder, S.H., 2019. Therapeutic Applications of Cysteamine and Cystamine in Neurodegenerative and Neuropsychiatric Diseases. Frontiers in Neurology, 10.

  • Pech-Cervantes, A.A., Ogunade, I.M., Jiang, Y., Irfan, M., Arriola, K.G., Amaro, F.X., Gonzalez, C.F., DiLorenzo, N., Bromfield, J.J., Vyas, D. and Adesogan, A.T., 2019. An expansin-like protein expands forage cell walls and synergistically increases hydrolysis, digestibility and fermentation of livestock feeds by fibrolytic enzymes. PLoS One, 14, e0224381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, H., Wang, J. Q., Kang, H. Y., Dong, S. H., Sun, P., Bu, D. P. and Zhou, L. Y., 2012. Effect of feeding Bacillus subtilis natto fermentation product on milk production and composition, blood metabolites, and rumen fermentation in early lactation dairy cows. Journal of Animal Physiology and Animal Nutrition, 96, 506–512.

    Article  CAS  PubMed  Google Scholar 

  • Petkova, M., Kitanov, I. and Girginov, D., 2008. Blood lipids profile in lactating cows fed with supplement of OVOCAP® Biotechnology in Animal Husbandry, 24, 19–28.

    Article  Google Scholar 

  • Pilajun, R., Thummasaeng, K., Sawasdiphan, S., Suwanlee, S., Inthisaeng, W., and Wanapat, M., 2019. Growth performance of Lowline Angus x Thai native crossbred beef under tropical condition. Tropical Animal Health and Production, 51, 2253–2261.

    Article  PubMed  Google Scholar 

  • Plaizier, J.C., Keunen, J.E., Walton, J.-P., Duffield, T.F.,and McBride, B.W., 2001. Effect of subacute ruminal acidosis on in situ digestion of mixed hay in lactating dairy cows. Canadian Journal of Animal Science, 81, 421–423.

    Article  Google Scholar 

  • Qadis, A.Q., Goya, S., Ikuta, K., Yatsu, M., Kimura, A., Nakanishi, S., and Sato, S., 2014. Effects of a bacteria-based probiotic on ruminal ph, volatile fatty acids and bacterial flora of Holstein calves. The Journal of Veterinary Medical Science, 76, 877–885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao, G.H., Shan, A.S., Ma, N., Ma, Q.Q.,and Sun, Z.W., 2010. Effect of supplemental Bacillus cultures on rumen fermentation and milk yield in Chinese Holstein cows. Journal of Animal Physiology and Animal Nutrition, 94, 429–436.

    CAS  PubMed  Google Scholar 

  • Quanjun, W., Shengyong, M., Hongxia, Z., and Weiyun, Z., 2002. Effect of cysteamine on in vitro fermentation by rumen microbes from goats. Journal of Huazhong Agricultural. 6.

  • SAS. 2009. SAS/STAT users guide, Version 9.1. SAS Institute Inc. Cary, NC, USA.

    Google Scholar 

  • Sun, P., Wang, J.Q., and Deng, L.F., 2013. Effects of Bacillus subtilis natto on milk production, rumen fermentation and ruminal microbiome of dairy cows. Animal, 7, 216–222.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y.K., Yan, X.G., Ban, Z.B., Yang, H.M., Hegarty, R.S., and Zhao, Y.M., 2017. The effect of cysteamine hydrochloride and nitrate supplementation on in-vitro and in-vivo methane production and productivity of cattle. Animal Feed Science and Technology, 232, 49–56.

    Article  CAS  Google Scholar 

  • Syngai, G.G., Gopi, R., Bharali, R., Dey, S., Lakshmanan, G.M., and Ahmed, G., 2016. Probiotics - the versatile functional food ingredients. Journal of Food Science and Technology, 53(2), 921-33.

    Article  PubMed  Google Scholar 

  • TMD. (2021). Climate. Thai Meteorological Department. Ministry of Digital Economy and Society. Bangkok, Thailand.

    Google Scholar 

  • Tuck, M. K., Chan, D. W., Chia, D., Godwin, A. K., Grizzle, W. E., Krueger, K. E., Rom, W., Sanda, M., Sorbara, L., Stass, S., Wang, W., and Brenner, D. E., 2009. Standard operating procedures for serum and plasma collection: early detection research network consensus statement standard operating procedure integration working group. Journal of Proteome Research, 8(1), 113–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uyeno, Y., Shigemori, S., Shimosato, T., 2015. Effect of probiotics/prebiotics on cattle health and productivity. Microbes and Environments, 30(2), 126-32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Varel, V.H., and Dehority, B.A., 1989. Ruminal cellulolytic bacteria and protozoa from bison, cattle-bison hybrids, and cattle fed three alfalfa-corn diets. Applied and Environmental Microbiology, 55, 148–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, C., Dong, C.J., Wang, Z.Q., Yang, F., Mao, H.L., Wu, Z., Zhou, Q., and Wang, H.F., 2015. Effect of cysteamine hydrochloride supplementation on the milk performance of dairy cow. Livestock Science, 178, 94–99.

    Article  Google Scholar 

  • Wang, S., Bai, M., Xu, K., Shao, Y., Yang, Z., **ong, X., Huang, R., Li, Y., and Liu, H., 2021. Effects of coated cysteamine on oxidative stress and inflammation in weaned pigs. Animals, 11, 2217.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wangkumhang, P., Wilantho, A., Shaw, P.J., Flori, L., Moazami-Goudarzi, K., Gautier, M., Duang**da, M., Assawamakin, A., and Tongsima, S., 2015. Genetic analysis of Thai cattle reveals a Southeast Asian indicine ancestry. PeerJ, 3, e1318.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weinberg, Z., Muck, R., Weimer, P., 2003. The survival of silage inoculant lactic acid bacteria in rumen fluid. Journal of Applied Microbiology, 94(6), 1066–1071.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Q.C., Wang, W.K., Zhang , F., Li, W.J., Wang, Y.L., Lu, L.K., and, Yang, H.J., 2022. Dietary cysteamine supplementation remarkably increased feed efficiency and shifted rumen fermentation toward glucogenic propionate production via enrichment of Prevotella in feedlot lambs. Microorganisms, 10(6):1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **jie, L., Zheng Kang, H., Li Mei, L., and Yuan Lin, Z., 2000. Effect of oral administration of cysteamine pellets or meal on pH, total dehydrogenase and TVFA in the rumen of lambs. Journal of Northeast Agricultural University, 4.

  • Yuan, X.P., Wang, J., and Yao, H.Y., 2004. Purification and some properties of endoxylanases from Bacillus subtilis. Food and Fermentation Industries, 30, 55-59.

    CAS  Google Scholar 

  • Zapata, O., Cervantes, A., Barreras, A., Monge-Navarro, F., González-Vizcarra, V.M., Estrada-Angulo, A., Urías-Estrada, J.D., Corona, L., Zinn, R.A., Martínez-Alvarez, I.G., and Plascencia, A., 2021. Effects of single or combined supplementation of probiotics and prebiotics on ruminal fermentation, ruminal bacteria and total tract digestion in lambs. Small Ruminant Research, 204, 106538.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Faculty of Natural Resources and Agro-Industry, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, for its support of experimental animal and research facilities.

Funding

This study was supported by the AMCOVET Co., Ltd., Thailand.

Author information

Authors and Affiliations

Authors

Contributions

The concept and design of the study were contributed by all authors. WM, KR, SR, TD, and MAB conducted all experiments. WM, PK, KW, and PP analyzed and interpreted the data. WM, PP, and MZI wrote the manuscript.

Corresponding author

Correspondence to Watcharawit Meenongyai.

Ethics declarations

Ethics approval

Experimental procedures were approved by the Institutional Animal Care and Use Committee, Kasetsart University, Thailand (No. ACKU65-CSC-001).

Consent for publication

All authors have read and approved the publication of the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meenongyai, W., Rasri, K., Rodjapot, S. et al. Effect of coated cysteamine hydrochloride and probiotics supplemented alone or in combination on feed intake, nutrients digestibility, ruminal fermentation, and blood metabolites of Kamphaeng Saen beef heifers. Trop Anim Health Prod 55, 69 (2023). https://doi.org/10.1007/s11250-023-03499-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-023-03499-2

Keywords

Navigation