Log in

Effect of Nano-BN/Si and BN/Al2O3 on Friction and Wear Properties of AlN Plate Immersed in the Lubricants

  • Methodology
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Nano-BN/Si and BN/Al2O3 composite lubricants was prepared by a hydrothermal stirring synthesis method. Orthogonal experiments were conducted by changing the mass fraction of Si and Al2O3. The extreme pressure and wear resistance performance of nano-BN lubricants were investigated using the four-ball machine method. The effect of nano-BN on the friction and wear performance of AlN plates was studied using multifunctional friction and wear tests. SEM, EDS, and XPS were used to characterize the wear morphology and element distribution on the wear surface of the steel balls and the sliding AlN plates. The wear and friction mechanism of nano-BN/Si and BN/Al2O3 as anti-wear additives contained in the nano-composite lubricants between the metal friction pairs were proposed. The excellent tribological performance of the BN composite lubricants is attributed to the synergistic effect between nano-Si particles or Al2O3 particles and layered nano-BN particles. This accelerates the formation of solid lubrication film composed of BN, Si, Al2O3, and Fe2O3 on the surface of the AlN plate, thus reducing the wear between friction pairs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data, models, and code generated or used during the study appear in the submitted article.

References

  1. Yuan, G.Z., Sun, J.L., et al.: Tribochemical behavior of ashless dialkyl dithiophosphate ester as an EP/AW additive in mineral oil for steel-aluminum contact[J]. Tribol. Trans. 61(4), 604–611 (2018)

    Article  CAS  Google Scholar 

  2. Shen, J., Liu, Y.: Application of cationic emulsion in stainless steel cold rolling[J]. Baosteel Tech. Res. 11(2), 1–5 (2017)

    CAS  Google Scholar 

  3. Fsm, A., Zl, B., Hhd, A., et al.: Study on the preparation and tribological properties of BN@C-OA nano-additive lubricants. Wear (2021). https://doi.org/10.1016/j.wear.2021.203876

    Article  Google Scholar 

  4. Thampi, A.D., Prasanth, M.A., Anandu, A.P., et al.: The effect of nanoparticle additives on the tribological properties of various lubricating oils–review. Mater. Today: Proc. 47, 4919–4924 (2021). https://doi.org/10.1016/j.matpr.2021.03.664

    Article  CAS  Google Scholar 

  5. Uflyand, I.E., Zhinzhilo, V.A., Burlakova, V.E.: Metal-containing nanomaterials as lubricant additives: state-of-the-art and future development. Friction 7(2), 93–116 (2019). https://doi.org/10.1007/s40544-019-0261-y

    Article  Google Scholar 

  6. Zhao, J., Huang, Y., He, Y., et al.: Nanolubricant additives: a review. Friction 9(5), 891–917 (2021). https://doi.org/10.1007/s40544-020-0450-8

    Article  Google Scholar 

  7. Chen, Z., Liu, X., Liu, Y., et al.: Ultrathin MoS2 nanosheets with superior extreme pressure property as boundary lubricants. Sci Rep 5(1), 1–7 (2015). https://doi.org/10.1038/srep12869

    Article  CAS  Google Scholar 

  8. Zhang, J., Jiang, D., Wang, D., et al.: MoS2 lubricating film meets supramolecular gel: a novel composite lubricating system for space applications. ACS Appl. Mater. Interfaces 13(48), 58036–58047 (2021). https://doi.org/10.1021/acsami.1c20182

    Article  CAS  Google Scholar 

  9. Hu, N., Zhang, X., Wang, X., et al.: Study on tribological properties and mechanisms of different morphology WS2 as lubricant additives. Materials 13(7), 1522 (2020). https://doi.org/10.3390/ma13071522

    Article  CAS  Google Scholar 

  10. Bondarev, A.V., Fraile, A., Polcar, T., et al.: Mechanisms of friction and wear reduction by h-BN nanosheet and spherical W nanoparticle additives to base oil: experimental study and molecular dynamics simulation. Tribology Int 151, 106493 (2020). https://doi.org/10.1016/j.triboint.2020.106493

    Article  CAS  Google Scholar 

  11. Meng, F.S., Li, Z., Ding, H.H., et al.: Study on the preparation and tribological properties of BN@ C-OA nano-additive lubricants. Wear 474, 203876 (2021). https://doi.org/10.1016/j.wear.2021.203876

    Article  CAS  Google Scholar 

  12. Rosenkranz, A., Liu, Y., Yang, L., et al.: 2D nano-materials beyond graphene: from synthesis to tribological studies. Appl Nanosci 10(9), 3353–88 (2020). https://doi.org/10.1007/s13204-020-01466-z

    Article  CAS  Google Scholar 

  13. Podgornik, B., Kosec, T., Kocijan, A., et al.: Tribological behaviour and lubrication performance of hexagonal boron nitride (h-BN) as a replacement for graphite in aluminium forming. Tribol Int 81, 267–275 (2015). https://doi.org/10.1016/j.triboint.2014.09.011

    Article  CAS  Google Scholar 

  14. Hao, L., Wang, Z., et al.: Tribological evaluation and lubrication mechanisms of nanoparticles enhanced lubricants in cold rolling. Mechanics & Industry 21(1), 108–114 (2020)

    Article  CAS  Google Scholar 

  15. Gupta, M.K., Bijwe, J., Padhan, M., et al.: Role of size of hexagonal boron nitride particles on tribo-performance of nano and micro oils. Lubr. Sci. 30(8), 441–456 (2018)

    Article  CAS  Google Scholar 

  16. Dai, W., Kheireddin, B., Gao, H., Liang, H.: Roles of nanoparticles in oil lubrication. Tribol. Int. 102, 88–98 (2016). https://doi.org/10.1016/j.triboint.2016.05.020

    Article  CAS  Google Scholar 

  17. Shahnazar, S., Bagheri, S., Abd Hamid, S.B.: Enhancing lubricant properties by nanoparticle additives. Int. J. Hydrogen Energy 41, 3153–3170 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.040

    Article  CAS  Google Scholar 

  18. Tang, Z., Li, S.: A review of recent developments of friction modifiers for liquid lubricants. Curr. Opin. Solid State Mater. Sci. 18, 119–139 (2014). https://doi.org/10.1016/j.cossms.2014.02.002

    Article  CAS  Google Scholar 

  19. Feng, X., Kwon, S., Park, J.Y., Salmeron, M.: Superlubric sliding of graphene nanoflakes on graphene. ACS Nano 7, 1718–1724 (2013). https://doi.org/10.1021/nn305722d

    Article  CAS  Google Scholar 

  20. Kalin, M., Kogovšek, J., Remškar, M.: Mechanisms and improvements in the friction and wear behavior using MoS2 nanotubes as potential oil additives. Wear 280–281, 36–45 (2012). https://doi.org/10.1016/j.wear.2012.01.011

    Article  CAS  Google Scholar 

  21. Tevet, O., Von-Huth, P., Popovitz-Biro, R., Rosentsveig, R., Wagner, H.D., Tenne, R.: Friction mechanism of individual multilayered nanoparticles. Proc. Natl. Acad Sci. 108, 19901–19906 (2011). https://doi.org/10.1073/pnas.1106553108

    Article  Google Scholar 

  22. Chinas-Castillo, F., Spikes, H.A.: Mechanism of action of colloidal solid dispersions. J. Tribol. 125, 552–557 (2003). https://doi.org/10.1115/1.1537752

    Article  CAS  Google Scholar 

  23. Sun, J.H., Zhang, Y.N., Lu, Z.B., Li, Q.Y., Xue, Q.J., Du, S.Y., et al.: Superlubricity enabled by pressure-induced friction collapse. J. Phys. Chem. Lett. 9, 2554–2559 (2018)

    Article  CAS  Google Scholar 

  24. Liñeira del Río, J.M., López, E.R., Fernández, J.: Synergy between boron nitride or graphene nanoplatelets and tri(butyl)ethylphosphonium diethylphosphate ionic liquid as lubricant additives of triisotridecyltrimellitate oil. J. Mol. Liq. 301, 112442 (2020). https://doi.org/10.1016/J.MOLLIQ.2020.112442

    Article  Google Scholar 

  25. Lahouij, I., Dassenoy, F., Vacher, B., Sinha, K., Brass, D.A., Devine, M.: Understanding the deformation of soot particles/agglomerates in a dynamic contact: tem in situ compression and shear experiments. Tribol. Lett. 53, 91–99 (2014). https://doi.org/10.1007/s11249-013-0246-3

    Article  Google Scholar 

  26. Lahouij, I., Dassenoy, F., Vacher, B., Martin, J.M.: Real time TEM imaging of compression and shear of single fullerene-like MoS2 nanoparticle. Tribol. Lett. 45, 131–141 (2012)

    Article  CAS  Google Scholar 

  27. Meng, Y., Su, F., Chen, Y.: Au/graphene oxide nanocomposite synthesized in supercritical CO2 fluid as energy efficient lubricant additive[J]. ACS Appl. Mater. Interfaces. 9(45), 39549–39559 (2017)

    Article  CAS  Google Scholar 

  28. Meng, Y., Su, F., Chen, Y.: Supercritical fluid synthesis and tribological applications of silver nanoparticle-decorated graphene in engine oil nanofluid. Sci. Rep. 6(1), 31246 (2016)

    Article  CAS  Google Scholar 

  29. Hu, K.H., Hu, X.G., Xu, Y.F., Huang, F., Liu, J.S.: The effect of morphology on the tribological properties of MoS2 in liquid paraffin. Tribol. Lett. 40, 155–165 (2010). https://doi.org/10.1007/s11249-010-9651-z

    Article  CAS  Google Scholar 

  30. Meng, Y., Su, F., Chen, Y.: Synthesis of nano-Cu/graphene oxide composites by supercritical CO2-assisted deposition as a novel material for reducing friction and wear. Chem. Eng. J. 281, 11–19 (2015)

    Article  CAS  Google Scholar 

  31. Çelik, O.N., Ay, N., Göncü, Y.: Effect of nano hexagonal boron nitride lubricant additives on the friction and wear properties of AISI 4140 steel. Part Sci. Technol. 31, 501–506 (2013). https://doi.org/10.1080/02726351.2013.779336

    Article  CAS  Google Scholar 

  32. Mate, C.M.: Force microscopy studies of the molecular origins of friction and lubrication. IBM J. Res. Dev. 39(6), 617–27 (1995). https://doi.org/10.1147/rd.396.0617

    Article  CAS  Google Scholar 

  33. Rapoport, L., Feldman, Y., Homyonfer, M., Cohen, H., Sloan, J., Hutchison, J., et al.: Inorganic fullerene-like material as additives to lubricants: structure–function relationship. Wear 225–229, 975–982 (1999). https://doi.org/10.1016/S0043-1648(99)00040-X

    Article  Google Scholar 

  34. Yang, H., Liu, S., Li, J., Li, M., Peng, G., Zou, G.: Synthesis of inorganic fullerene-like WS2 nanoparticles and their lubricating performance. Nanotechnology 17, 1512–1519 (2006). https://doi.org/10.1088/0957-4484/17/5/058

    Article  CAS  Google Scholar 

  35. Rapoport, L., Leshchinsky, V., Lvovsky, M., Lapsker, I., Volovik, Y., Feldman, Y., et al.: Superior tribological properties of powder materials with solid lubricant nanoparticles. Wear 255, 794–800 (2003). https://doi.org/10.1016/S0043-1648(03)00285-0

    Article  CAS  Google Scholar 

  36. Padgurskas, J., Rukuiza, R., Prosyčevas, I., Kreivaitis, R.: Tribological properties of lubricant additives of Fe, Cu and Co Nanoparticles. Tribol. Int. 60, 224–232 (2013). https://doi.org/10.1016/J.TRIBOINT.2012.10.024

    Article  CAS  Google Scholar 

  37. Zhang, S., Hu, L., Feng, D., Wang, H.: Anti-wear and friction-reduction mechanism of Sn and Fe nanoparticles as additives of multialkylated cyclopentanes under vacuum condition. Vacuum 87, 75–80 (2013). https://doi.org/10.1016/j.vacuum.2012.07.009

    Article  CAS  Google Scholar 

  38. Kolodziejczyk, L., Martínez-Martínez, D., Rojas, T.C., Fernández, A., Sánchez-López, J.C.: Surface-modified Pd nanoparticles as a superior additive for lubrication. J. Nanoparticle Res. 9, 639–645 (2007). https://doi.org/10.1007/s11051-006-9124-3

    Article  CAS  Google Scholar 

  39. Kumara, C., Leonard, D.N., Meyer, H.M., Luo, H., Armstrong, B.L., Qu, J.: Palladium nanoparticle-enabled ultrathick tribofilm with unique composition. ACS Appl. Mater. Interfaces 10, 31804–31812 (2018). https://doi.org/10.1021/acsami.8b11213

    Article  CAS  Google Scholar 

  40. Chou, R., Battez, A.H., Cabello, J.J., Viesca, J.L., Osorio, A., Sagastume, A.: Tribological behavior of polyalphaolefin with the addition of nickel nanoparticles. Tribol. Int. 43, 2327–2332 (2010). https://doi.org/10.1016/j.triboint.2010.08.006

    Article  CAS  Google Scholar 

  41. Prakash, A., Sundaram, K.B.: Optical and XPS studies of BCN thin films by cosputtering of B4C and BN targets. Appl. Surf. Sci. 396, 484–91 (2017). https://doi.org/10.1016/j.apsusc.2016.10.180

    Article  CAS  Google Scholar 

  42. Radice, S., Mischler, S.: Effect of electrochemical and mechanical parameters on the lubrication behavior of Al2O3 nanoparticles in aqueous suspensions. Wear 261, 1032–1041 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks for the support provided by the National Natural Science Foundation of China (No. 51804166), Natural Science Foundation of Jiangsu Province (No. BK20131346), major project of Nan**g Institute of Technology Innovation Fund (CKJA202201), the Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology (ASMA2022021), and the Major project of Basic Science (Natural science) research in colleges and universities of Jiangsu Province (23KJA430009).

Author information

Authors and Affiliations

Authors

Contributions

SX and JZ wrote the main manuscript text and Chao Wu prepared figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Sang **ong.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest related to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ong, S., Zhang, J. & Wu, C. Effect of Nano-BN/Si and BN/Al2O3 on Friction and Wear Properties of AlN Plate Immersed in the Lubricants. Tribol Lett 71, 103 (2023). https://doi.org/10.1007/s11249-023-01773-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-023-01773-w

Keywords

Navigation