Log in

Effect of TiC Particles Addition on Tribological Behavior of Ductile Iron

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In order to improve the wear resistance of ductile iron, different contents of TiC particles are added into ductile iron used lost-foam casting and the tribological behavior of ductile iron is studied through a ball-on-disk sliding test. It is found that with the increase of TiC content, the pearlite content gradually increases, which is attributed to TiC promoting the heterogeneous nucleation of cementite and increasing cooling rate of the melt. The increase of pearlite content and the second-phase strengthening caused by TiC improve the hardness and tensile strength of ductile iron. Ductile iron has the best tensile strength (498 MPa) and hardness (168 HV1) with a TiC content of 1 wt.%. The wear resistance also increases with increasing TiC content. The wear volume is reduced from 0.14 to 0.03 mm3, and the main wear mechanism changes from adhesive wear to abrasive wear. The oxide layer produced by frictional heat on the worn surface and the hardened layer produced by strain hardening on the subsurface further improve the wear resistance. Therefore, the wear resistance of ductile iron is affected by the changes of microstructure before and after wear.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

All data that support the findings of this study appear in the submitted article.

References

  1. Fontanari, V., Benedetti, M., Girardi, C., Giordanino, L.: Investigation of the lubricated wear behavior of ductile cast iron and quenched and tempered alloy steel for possible use in worm gearing. Wear 350–351, 68–73 (2016). https://doi.org/10.1016/j.wear.2016.01.006

    Article  CAS  Google Scholar 

  2. Zhang, H., Wu, Y.X., Li, Q.J., Hong, X.: Mechanical properties and rolling-sliding wear performance of dual phase austempered ductile iron as potential metro wheel material. Wear 406–407, 156–165 (2018). https://doi.org/10.1016/j.wear.2018.04.005

    Article  CAS  Google Scholar 

  3. Wang, B.X., Barber, G.C., Qiu, F., Zou, Q., Yang, H.Y.: A review: phase transformation and wear mechanisms of single-step and dual-step austempered ductile irons. J. Mater. Res. Technol. 9, 1054–1069 (2020). https://doi.org/10.1016/j.jmrt.2019.10.074

    Article  CAS  Google Scholar 

  4. Du, Y.Z., Gao, X.Q., Wang, X.L., Wang, X., Ge, Y.F., Jiang, B.L.: Tribological behavior of austempered ductile iron (ADI) obtained at different austempering temperatures. Wear 456–457, 203396 (2020). https://doi.org/10.1016/j.wear.2020.203396

    Article  CAS  Google Scholar 

  5. Souza Oliveira Pimentel, A., Luiz-Guesser, W., da Silva, W.J.R.C., Dolabella Portella, P., Woydt, M., Burbank, J.: Abrasive wear behavior of austempered ductile iron with niobium additions. Wear 440–441, 203065 (2019). https://doi.org/10.1016/j.wear.2019.203065

    Article  CAS  Google Scholar 

  6. Wang, B.X., Qiu, F., Barber, G.C., Pan, Y.M., Cui, W.W., Wang, R.: Microstructure, wear behavior and surface hardening of austempered ductile iron. J. Mater. Res. Technol. 9, 9838–9855 (2020). https://doi.org/10.1016/j.jmrt.2020.06.076

    Article  CAS  Google Scholar 

  7. Sckudlarek, W., Krmasha, M.N., Al-Rubaie, K.S., Preti, O., Milan, J.C.G., da Costa, C.E.: Effect of austempering temperature on microstructure and mechanical properties of ductile cast iron modified by niobium. J. Mater. Res. Technol. 12, 2414–2425 (2021). https://doi.org/10.1016/j.jmrt.2021.04.041

    Article  CAS  Google Scholar 

  8. Zheng, B.W., Dong, F.Y., Yuan, X.G., Zhang, Y., Huang, H.J., Zuo, X.J., Luo, L.S., Wang, L., Su, Y.Q., Wang, X., Shi, K.: Evaluation on tribological characteristics of (TiC+TiB)/Ti–6Al–4V composite in the range from 25 °C to 600 °C. Wear 450–451, 203256 (2020). https://doi.org/10.1016/j.wear.2020.203256

    Article  CAS  Google Scholar 

  9. Zheng, B.W., Dong, F.Y., Yuan, X.G., Huang, H.J., Zhang, Y., Zuo, X.J., Luo, L.S., Wang, L., Su, Y.Q., Li, W.D., Liaw, P.K., Wang, X.: Microstructure and tribological behavior of in situ synthesized (TiB+TiC)/Ti6Al4V (TiB/TiC=1/1) composites. Tribol. Int. 145, 106177 (2020). https://doi.org/10.1016/j.triboint.2020.106177

    Article  CAS  Google Scholar 

  10. Zheng, K.L., Wei, X.S., Yan, B., Yan, P.F.: Ceramic waste SiC particle-reinforced Al matrix composite brake materials with a high friction coefficient. Wear 458–459, 203424 (2020). https://doi.org/10.1016/j.wear.2020.203424

    Article  CAS  Google Scholar 

  11. Kalogeropoulou, S., Baud, L., Eustathopoulos, N.: Relationship between wettability and reactivity in Fe/SiC system. Acta Metal. Mater. 43, 907–912 (1995). https://doi.org/10.1016/0956-7151(94)00336-G

    Article  CAS  Google Scholar 

  12. Qiu, F., Liu, T.S., Zhang, X., Chang, F., Shu, S.L., Yang, H.Y., Zhao, Q.L., Jiang, Q.C.: Application of nanoparticles in cast steel: An overview. China Foundry 17(2), 111–126 (2020). https://doi.org/10.1007/s41230-020-0037-z

    Article  Google Scholar 

  13. Wang, B.X., Qiu, F., Cui, W.W., **, Y.P., Zhang, Y., Hu, Z.R., Barber, G.C.: Microstructure and tensile properties of graphite ductile iron improved by minor amount of dual-phased TiC–TiB2 nanoparticles. Adv. Eng. Mater. 23, 2100246 (2021). https://doi.org/10.1002/adem.202100246

    Article  CAS  Google Scholar 

  14. Zhang, H., Wang, W.X., Chang, F., Li, C.L., Shu, S.L., Wang, Z.F., Han, X., Zou, Q., Qiu, F., Jiang, Q.C.: Microstructure manipulation and strengthening mechanisms of 40Cr steel via trace TiC nanoparticles. Mater. Sci. Eng. A 822, 141693 (2021). https://doi.org/10.1016/j.msea.2021.141693

    Article  CAS  Google Scholar 

  15. Chang, F., Zhang, H., Gao, Y.L., Shu, S.L., Qiu, F., Jiang, Q.C.: Microstructure evolution and mechanical property enhancement of high-Cr hot work die steel manipulated by trace amounts of nano-sized TiC. Mater. Sci. Eng. A 824, 141788 (2021). https://doi.org/10.1016/j.msea.2021.141788

    Article  CAS  Google Scholar 

  16. Qiu, F., Zhang, H., Li, C.L., Wang, Z.F., Chang, F., Yang, H.Y., Li, C.D., Han, X., Jiang, Q.C.: Simultaneously enhanced strength and toughness of cast medium carbon steels matrix composites by trace nano-sized TiC particles. Mater. Sci. Eng. A 819, 141485 (2021). https://doi.org/10.1016/j.msea.2021.141485

    Article  CAS  Google Scholar 

  17. Razavi, M., Rahimipour, M.R., Rajabi-Zamani, A.H.: Effect of nanocrystalline TiC powder addition on the hardness and wear resistance of cast iron. Mater. Sci. Eng. A 454–455, 144–147 (2007). https://doi.org/10.1016/j.msea.2006.11.035

    Article  CAS  Google Scholar 

  18. Yi, D.Q., Yu, P.C., Hu, B., Liu, H.Q., Wang, B., Jiang, Y.: Preparation of nickel-coated titanium carbide particulates and their use in the production of reinforced iron matrix composites. Mater. Des. 52, 572–579 (2013). https://doi.org/10.1016/j.matdes.2013.05.097

    Article  CAS  Google Scholar 

  19. Park, J.J., Hong, S.M., Park, E.K., Kim, K.Y., Lee, M.K., Rhee, C.K.: Microstructure and properties of SA 106B carbon steel after treatment of the melt with nano-sized TiC particles. Mater. Sci. Eng. A 613, 217–223 (2014). https://doi.org/10.1016/j.msea.2014.06.103

    Article  CAS  Google Scholar 

  20. Hong, S.M., Park, E.K., Park, J.J., Lee, M.K., Gu Lee, J.: Effect of nano-sized TiC particle addition on microstructure and mechanical properties of SA-106B carbon steel. Mater. Sci. Eng. A 643, 37–46 (2015). https://doi.org/10.1016/j.msea.2015.07.026

    Article  CAS  Google Scholar 

  21. **ao, B.T., Fan, Z.T., Jiang, W.M., Liu, X.W., Long, W., Hu, Q.: Microstructure and mechanical properties of ductile cast iron in lost foam casting with vibration. J. Iron Steel Res. Int. 21, 1049–1054 (2014). https://doi.org/10.1016/S1006-706X(14)60182-5

    Article  CAS  Google Scholar 

  22. Wang, B.X., Zhang, Y., Qiu, F., Hu, M., Cui, W.W., Hu, Z.R., Barber, G.C.: Simultaneously enhanced hardness and toughness of normalized graphite ductile irons by TiC-TiB2 nanoparticles. Mater. Lett. 291, 129597 (2021). https://doi.org/10.1016/j.matlet.2021.129597

    Article  CAS  Google Scholar 

  23. Xu, Z.M., Liang, G.F., Guan, Q.F., Jiang, Q.C.: TiC as heterogeneous nuclei of the (Fe, Mn)3C and austenite intergrowth eutectic in austenite steel matrix wear resistant composite. Mater. Res. Bull. 39, 457–463 (2004). https://doi.org/10.1016/j.materresbull.2003.10.014

    Article  CAS  Google Scholar 

  24. Lacaze, J., Sertucha, J., Åberg, L.M.: Microstructure of as-cast ferritic-pearlitic nodular cast irons. ISIJ Int. 56(9), 1606–1615 (2016). https://doi.org/10.2355/isi**ternational.ISIJINT-2016-108

    Article  CAS  Google Scholar 

  25. Zheng, B.C., Huang, Z.F., **ng, J.D., Wang, Y., Jian, Y.X., **ao, Y.Y., Fan, X.: Three-body abrasive behavior of cementite–iron composite with different cementite volume fractions. Tribol. Lett. 62, 32 (2016). https://doi.org/10.1007/s11249-016-0683-x

    Article  CAS  Google Scholar 

  26. Wang, Z.H., Zhang, X., Xu, F.L., Qian, K.C., Chen, K.M.: Effect of nodularity on mechanical properties and fracture of ferritic spheroidal graphite iron. China Foundry 16(6), 386–392 (2019). https://doi.org/10.1007/s41230-019-9080-z

    Article  CAS  Google Scholar 

  27. Laine, J., Jalava, K., Vaara, J., Soivio, K., Frondelius, T., Orkas, J.: The mechanical properties of ductile iron at intermediate temperatures: The effect of silicon content and pearlite fraction. Int. J. Met. 15(2), 538–547 (2021). https://doi.org/10.1007/s40962-020-00473-8

    Article  CAS  Google Scholar 

  28. Chen, C., Lv, B., Ma, H., Sun, D.Y., Zhang, F.C.: Wear behavior and the corresponding work hardening characteristics of Hadfield steel. Tribol. Int. 121, 389–399 (2018). https://doi.org/10.1016/j.triboint.2018.01.044

    Article  CAS  Google Scholar 

  29. Meng, Y., Deng, J.X., Zhang, Y., Wang, S.J., Li, X.M., Yue, H.Z., Ge, D.L.: Tribological properties of textured surfaces fabricated on AISI 1045 steels by ultrasonic surface rolling under dry reciprocating sliding. Wear 460–461, 203488 (2020). https://doi.org/10.1016/j.wear.2020.203488

    Article  CAS  Google Scholar 

  30. Trevisiol, C., Jourani, A., Bouvier, S.: Effect of hardness, microstructure, normal load and abrasive size on friction and on wear behaviour of 35NCD16 steel. Wear 388–389, 101–111 (2017). https://doi.org/10.1016/j.wear.2017.05.008

    Article  CAS  Google Scholar 

  31. Schwingenschlögl, P., Niederhofer, P., Merklein, M.: Investigation on basic friction and wear mechanisms within hot stam** considering the influence of tool steel and hardness. Wear 426–427, 378–389 (2019). https://doi.org/10.1016/j.wear.2018.12.018

    Article  CAS  Google Scholar 

  32. Garbar, I.I.: Gradation of oxidational wear of metals. Tribol. Int. 35, 749–755 (2002). https://doi.org/10.1016/S0301-679X(02)00032-4

    Article  CAS  Google Scholar 

  33. Wang, Y.X., Yang, Y.J., Yang, H.J., Zhang, M., Ma, S.G., Qiao, J.W.: Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy. Mater. Chem. Phy. 210, 233–239 (2018). https://doi.org/10.1016/j.matchemphys.2017.05.029

    Article  CAS  Google Scholar 

  34. Zambrano, O.A., Coronado, J.J., Rodríguez, S.A.: Tempering temperature effect on sliding wear at high temperatures in mottled cast iron. Tribol. Lett. 57, 19 (2015). https://doi.org/10.1007/s11249-014-0462-5

    Article  CAS  Google Scholar 

  35. Zhang, Z.J., Zhang, B.S., Zhu, S.S., Yu, Y.Q., Wang, Z.Z., Zhang, X.C., Lu, B.: Microstructural characteristics and enhanced wear resistance of nanoscale Al2O3/13 wt%TiO2-reinforced CoCrFeMnNi high entropy coatings. Surf. Coat. Technol. 412, 127019 (2021). https://doi.org/10.1016/j.surfcoat.2021.127019

    Article  CAS  Google Scholar 

  36. Zhao, Z.Y., Zhang, L.Z., Bai, P.K., Du, W.B., Wang, S.W., Xu, X.Y., Dong, Q.N., Li, Y.X., Han, B.: Tribological behavior of in situ TiC/graphene/graphite/Ti6Al4V matrix composite through laser cladding. Acta Metall Sin (Engl Lett) 34, 1317–1330 (2021). https://doi.org/10.1007/s40195-021-01215-3

    Article  CAS  Google Scholar 

  37. Wright, S.I., Nowell, M.M., Field, D.P.: A review of strain analysis using electron backscatter diffraction. Microsc. Microanal. 17, 316–329 (2011). https://doi.org/10.1017/S1431927611000055

    Article  CAS  Google Scholar 

  38. Yan, X.C., Hu, J., Wang, L.Y., Chai, Z.S., Sun, W.H., Xu, W.: The coupled effect of thermal and mechanical stabilities of austenite on the wear resistance in a 0.2C–5Mn-1.6Si steel down to cryogenic temperatures. Wear 486–487, 204116 (2021). https://doi.org/10.1016/j.wear.2021.204116

    Article  CAS  Google Scholar 

  39. Yan, X.C., Hu, J., Yu, H., Wang, C.C., Xu, W.: Unraveling the significant role of retained austenite on the dry sliding wear behavior of medium manganese steel. Wear 476, 203745 (2021). https://doi.org/10.1016/j.wear.2021.203745

    Article  CAS  Google Scholar 

  40. Zamani, M., Ghasemi, H.M., Mizadeh, H.: Effect of variation of martensite with a constant carbon content on mechanical behavior and sliding wear of dual phase steels. Tribol. Lett. 70, 73 (2022). https://doi.org/10.1007/s11249-022-01616-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Qiwen Zhou and Wendong Xu (Shenyang University of Technology, China) for the samples produced and useful discussions.

Funding

This work was supported by the National Key Research and Development Program of China (No. 2019YFB2006501), the State Key Laboratory of Light Alloy Casting Technology for High-end Equipment (No. LACT-009), and Program for Nature Science Foundation of Liaoning Province (No. 2021-BS-150).

Author information

Authors and Affiliations

Authors

Contributions

Yu Zhao and Wei Zhang wrote the main manuscript text. Shulin Dong, Ruirun Chen, and Qi Wang provided support for the analysis of data. Yingdong Qu, Rongde Li, and Guanglong Li provided support for the fundings. Guo** Zhou and Wei Sun prepared figures 5–7. All authors reviewed the manuscript.

Corresponding author

Correspondence to Wei Zhang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zhang, W., Qu, Y. et al. Effect of TiC Particles Addition on Tribological Behavior of Ductile Iron. Tribol Lett 71, 27 (2023). https://doi.org/10.1007/s11249-023-01701-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-023-01701-y

Keywords

Navigation